期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
学习理论中的MLP方法 被引量:1
1
作者 任静静 徐艳艳 陈广贵 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期247-251,共5页
移动最小二乘(MLS)法是数据插值、数值分析和统计等学科领域的一种逼近方法.H.Y.Wang,D.H.Xiang,D.X.Zhou(J Approx Theory,2010,162:599-614.)用MLS方法研究了L2框架下学习理论中的回归问题,从而得到了样本误差、逼近误差的更优结果.... 移动最小二乘(MLS)法是数据插值、数值分析和统计等学科领域的一种逼近方法.H.Y.Wang,D.H.Xiang,D.X.Zhou(J Approx Theory,2010,162:599-614.)用MLS方法研究了L2框架下学习理论中的回归问题,从而得到了样本误差、逼近误差的更优结果.但是很多函数类在L2框架下很难研究,于是本文用移动最小p乘(MLP)法将L2框架下学习理论中回归问题的一些理论推广到Lp(1≤p≤∞)框架下,从而为研究Lp框架下学习算法的泛化性能提供了理论基础. 展开更多
关键词 学习理论 lp框架 p-样本误差 范数条件 Lτ条件
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部