Chronic enteropathy associated with the SLCO2A1 gene(CEAS)is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss.This review explores ...Chronic enteropathy associated with the SLCO2A1 gene(CEAS)is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss.This review explores the potential mechanisms underlying the pathogenesis of CEAS,focusing on the role of SLCO2A1-encoded prostaglandin transporter OATP2A1 and its impact on prostaglandin E2(PGE2)levels.Studies have suggested that elevated PGE2 levels contribute to mucosal damage,inflammation,and disruption of the intestinal barrier.The effects of PGE2 on macrophage activation and Maxi-Cl channel functionality,as well as its interaction with nonsteroidal anti-inflammatory drugs play crucial roles in the progression of CEAS.Understanding the balance between its protective and pro-inflammatory effects and the complex interactions within the gastrointestinal tract can shed light on potential therapeutic targets for CEAS and guide the development of novel,targeted therapies.展开更多
The UV irradiation is used for removing Antibiotic Resistant Bacteria(ARB)and Antibiotic Resistance Genes(ARG)from wastewater treatment.Bacteriophages are viruses that infect within bacteria,are recognized for bacteri...The UV irradiation is used for removing Antibiotic Resistant Bacteria(ARB)and Antibiotic Resistance Genes(ARG)from wastewater treatment.Bacteriophages are viruses that infect within bacteria,are recognized for bacterial control.The influence of some parameters in quantification and performance influencing of pathogen demobilization could be considered in disinfection of wastewater.The comparison of Polyvalent phage(NE1)versus Coliphage(NE4)in suppressing a bacterium Escherichia coli(NDM-1:b-lactam-resistant)with UV irradiation was observed the efficacy in reduction of cells in the disinfection and parameter process.The results with the effect of UV-C irradiation on NDM-1 infected with 1%of NE4 showed a decrease of cells from 8×10^(6)to 2×10^(5)in 60 min with UV-C dose.The NDM1(E.coli)was infected with 1%of NE4(Polyvalent Phage)under magnetic stirring for 1 h,the cells count was 8×10^(6).After 1 h in UV-C e×posure,the cells number reached 3×10^(5).The NDM1 that was e×posed in 1 h of UV-C irradiation and then was infected with 1%of NE4.Cells counting were done 24 h after this procedure.These cells were e×posed in UV-C and showed a reduction in the number of cells from 1×10^(8)to 4×10^(5)after 60 min.The results indicate that bacteriophages can mitigate bacteria species,and combined the conventional water disinfection technologies that can support the microbial safety control strategies.展开更多
At present,ischemic stroke seriously affects people's life and health,and its occurrence,development and therapeutic effect are affected by many factors.With the deep research on ischemic cerebral apoplexy disease...At present,ischemic stroke seriously affects people's life and health,and its occurrence,development and therapeutic effect are affected by many factors.With the deep research on ischemic cerebral apoplexy disease,people have a deeper understanding of its virulence genes.The apolipoprotein E genotype is the research focus recently,its genetic type is not only involved in the occurrence and development of ischemic cerebral apoplexy,but also causes different therapeatic effects.In this paper,we reviewed the relationship between apolipoprotein E gene polymorphism and lipid metabolism and atherosclerosis in ischemic stroke,as well as the differences in the therapeutic effects of thrombolysis,thrombectomy and lipid-lowering among different genotypes.展开更多
Objective Pseudogenes are initially regarded as nonfunctional genomic sequences,but some pseudogenes regulate tumor initiation and progression by interacting with other genes to modulate their transcriptional activiti...Objective Pseudogenes are initially regarded as nonfunctional genomic sequences,but some pseudogenes regulate tumor initiation and progression by interacting with other genes to modulate their transcriptional activities.Olfactory receptor family 7 subfamily E member 47 pseudogene(OR7E47P)is expressed broadly in lung tissues and has been identified as a positive regulator in the tumor microenvironment(TME)of lung adenocarcinoma(LUAD).This study aimed to elucidate the correlation between OR7E47P and tumor immunity in lung squamous cell carcinoma(LUSC).Methods Clinical and molecular information from The Cancer Genome Atlas(TCGA)LUSC cohort was used to identify OR7E47P-related immune genes(ORIGs)by weighted gene correlation network analysis(WGCNA).Based on the ORIGs,2 OR7E47P clusters were identified using non-negative matrix factorization(NMF)clustering,and the stability of the clustering was tested by an extreme gradient boosting classifier(XGBoost).LASSO-Cox and stepwise regressions were applied to further select prognostic ORIGs and to construct a predictive model(ORPScore)for immunotherapy.The Botling cohorts and 8 immunotherapy cohorts(the Samstein,Braun,Jung,Gide,IMvigor210,Lauss,Van Allen,and Cho cohorts)were included as independent validation cohorts.Results OR7E47P expression was positively correlated with immune cell infiltration and enrichment of immune-related pathways in LUSC.A total of 57 ORIGs were identified to classify the patients into 2 OR7E47P clusters(Cluster 1 and Cluster 2)with distinct immune,mutation,and stromal programs.Compared to Cluster 1,Cluster 2 had more infiltration by immune and stromal cells,lower mutation rates of driver genes,and higher expression of immune-related proteins.The clustering performed well in the internal and 5 external validation cohorts.Based on the 7 ORIGs(HOPX,STX2,WFS,DUSP22,SLFN13,GGCT,and CCSER2),the ORPScore was constructed to predict the prognosis and the treatment response.In addition,the ORPScore was a better prognostic factor and correlated positively with the immunotherapeutic response in cancer patients.The area under the curve values ranged from 0.584 to 0.805 in the 6 independent immunotherapy cohorts.Conclusion Our study suggests a significant correlation between OR7E47P and TME modulation in LUSC.ORIGs can be applied to molecularly stratify patients,and the ORPScore may serve as a biomarker for clinical decision-making regarding individualized prognostication and immunotherapy.展开更多
Background: COVID-19 is a disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Epidemiological data indicated that bacterial complications in COVID-19 would decrease clearance rate of the in...Background: COVID-19 is a disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Epidemiological data indicated that bacterial complications in COVID-19 would decrease clearance rate of the infecting agent and increase mortality rate. Macrolides such as Azithromycin are usually administered to COVID-19 patients as palliative treatments. Currently, a considerable number of bacterial strains have developed resistance to various antibiotics, especially macrolides. Resistance is reported to be due to possession of mefA, ermB, and mphA genes by Gram positive and Gram negative bacteria. Therefore, this study determined antibiotic resistance patterns and identify mefA, ermB and mphA macrolide-resistant genes in bacterial pathogens isolated from COVID-19 cases in Ibadan, Nigeria. Methods: 400 Nasopharyngeal samples were collected from symptomatic cases before antibiotic medication;structured questionnaires were administered to collect socio-demographic data of participants. Samples were cultured on Blood, Chocolate, MacConkey and Mannitol salt agar at 37°C for 48 hrs. Bacterial identification was performed using VITEK 2.0 ID cards and API 20E for Gram positive and negative bacteria respectively. Antibiotic Susceptibility Testing was performed using Kirby Bauer disc diffusion methods and VITEK 2.0 AST card kits. DNA of multidrug resistant bacterial isolates was extracted;resistant genes were determined using a polymerase chain reaction with specific primers. Amplified genes were detected using agarose gel electrophoresis. Results: 240 (60%) had bacterial growth and 97 (22.2%) yielded no growth. From the 240 bacterial isolates, 38 (15.83%) were multi-drug resistant including resistance to macrolides (Azithromycin) 20 (52.63%) of which were positive for either mefA or ermB, and none (0.0%) possess mphA gene;14 (36.8%) isolates had mefA gene, 10 (26.3%) isolates carried ermB gene. Conclusion: Multi-drug bacterial resistance including macrolides and quinolones was detected. Only mefA and ermB genes were detected in the bacterial isolates, especially in Gram positive organisms. The detection of mefA and ermB genes in the MDR bacterial isolates raised concern on the use of azithromycin as palliative treatment for COVID-19 symptomatic patients.展开更多
Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeut...Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeutic drugs and targets for diabetes-related sepsis.The research also incorporates traditional physical therapy perspectives,emphasizing the genomic insights gained from exercise therapy in disease management and prevention.Methods:Gene analysis was conducted on the GSE168796 and GSE94717 datasets to identify ER stress-related genes.Gene interactions and immune cell correlations were mapped using GeneCard and STRING databases.A screening of 2,456 compounds from the TCMSP database was performed to identify potential therapeutic agents,with a focus on their docking potential.Techniques such as luciferase reporter gene assay and RNA interference were used to examine the interactions between microRNA-149-5p and MMP9.Results:The study identified 2,006 differentially expressed genes and 616 miRNAs.Key genes like MMP9,TNF-α,and IL1B were linked to an immunosuppressive state.Licorice glycoside E demonstrated high affinity for MMP9,suggesting its potential effectiveness in treating diabetes.The constructed miRNA network highlighted the regulatory roles of MMP9,IL1B,IFNG,and TNF-α.Experimental evidence confirmed the binding of microRNA-149-5p to MMP9,impacting apoptosis in diabetic cells.Conclusion:The findings highlight the regulatory role of microRNA-149-5p in managing MMP9,a crucial gene in diabetes pathophysiology.Licorice glycoside E emerges as a promising treatment option for diabetes,especially targeting MMP9 affected by ER stress.The study also underscores the significance of physical exercise in modulating ER stress pathways in diabetes management,bridging traditional physical therapy and modern scientific understanding.Our study has limitations.It focuses on the microRNA-149-5p-MMP9 network in sepsis,using cell-based methods without animal or clinical trials.Despite strong in vitro findings,in vivo studies are needed to confirm licorice glycoside E’s therapeutic potential and understand the microRNA-149-5p-MMP9 dynamics in real conditions.展开更多
基金Supported by the National High-Level Hospital Clinical Research Fund,No.2022-PUMCH-A-020the Undergraduate Teaching Reform and Innovation Project,No.2022zlgc0108.
文摘Chronic enteropathy associated with the SLCO2A1 gene(CEAS)is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss.This review explores the potential mechanisms underlying the pathogenesis of CEAS,focusing on the role of SLCO2A1-encoded prostaglandin transporter OATP2A1 and its impact on prostaglandin E2(PGE2)levels.Studies have suggested that elevated PGE2 levels contribute to mucosal damage,inflammation,and disruption of the intestinal barrier.The effects of PGE2 on macrophage activation and Maxi-Cl channel functionality,as well as its interaction with nonsteroidal anti-inflammatory drugs play crucial roles in the progression of CEAS.Understanding the balance between its protective and pro-inflammatory effects and the complex interactions within the gastrointestinal tract can shed light on potential therapeutic targets for CEAS and guide the development of novel,targeted therapies.
基金Fundação de Amparo a Pesquisa do Estado de São Paulo(FAPESP)and the Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq),São Paulo,Brazil for PhD scholarship(Process N°.141086/2015-7)financial support(Process No.870243/1997-7).
文摘The UV irradiation is used for removing Antibiotic Resistant Bacteria(ARB)and Antibiotic Resistance Genes(ARG)from wastewater treatment.Bacteriophages are viruses that infect within bacteria,are recognized for bacterial control.The influence of some parameters in quantification and performance influencing of pathogen demobilization could be considered in disinfection of wastewater.The comparison of Polyvalent phage(NE1)versus Coliphage(NE4)in suppressing a bacterium Escherichia coli(NDM-1:b-lactam-resistant)with UV irradiation was observed the efficacy in reduction of cells in the disinfection and parameter process.The results with the effect of UV-C irradiation on NDM-1 infected with 1%of NE4 showed a decrease of cells from 8×10^(6)to 2×10^(5)in 60 min with UV-C dose.The NDM1(E.coli)was infected with 1%of NE4(Polyvalent Phage)under magnetic stirring for 1 h,the cells count was 8×10^(6).After 1 h in UV-C e×posure,the cells number reached 3×10^(5).The NDM1 that was e×posed in 1 h of UV-C irradiation and then was infected with 1%of NE4.Cells counting were done 24 h after this procedure.These cells were e×posed in UV-C and showed a reduction in the number of cells from 1×10^(8)to 4×10^(5)after 60 min.The results indicate that bacteriophages can mitigate bacteria species,and combined the conventional water disinfection technologies that can support the microbial safety control strategies.
基金Major Science and Technology Project of Hainan Province(ZDKJ202004)。
文摘At present,ischemic stroke seriously affects people's life and health,and its occurrence,development and therapeutic effect are affected by many factors.With the deep research on ischemic cerebral apoplexy disease,people have a deeper understanding of its virulence genes.The apolipoprotein E genotype is the research focus recently,its genetic type is not only involved in the occurrence and development of ischemic cerebral apoplexy,but also causes different therapeatic effects.In this paper,we reviewed the relationship between apolipoprotein E gene polymorphism and lipid metabolism and atherosclerosis in ischemic stroke,as well as the differences in the therapeutic effects of thrombolysis,thrombectomy and lipid-lowering among different genotypes.
基金the Wuhan University Medical Faculty Innovation Seed Fund Cultivation Project(No.TFZZ2018025)the Chen Xiao-ping Foundation for the Development of Science and Technology of Hubei Province(No.CXPJJH12000001-2020313)the National Natural Science Foundation of China(No.81670123 and No.81670144).
文摘Objective Pseudogenes are initially regarded as nonfunctional genomic sequences,but some pseudogenes regulate tumor initiation and progression by interacting with other genes to modulate their transcriptional activities.Olfactory receptor family 7 subfamily E member 47 pseudogene(OR7E47P)is expressed broadly in lung tissues and has been identified as a positive regulator in the tumor microenvironment(TME)of lung adenocarcinoma(LUAD).This study aimed to elucidate the correlation between OR7E47P and tumor immunity in lung squamous cell carcinoma(LUSC).Methods Clinical and molecular information from The Cancer Genome Atlas(TCGA)LUSC cohort was used to identify OR7E47P-related immune genes(ORIGs)by weighted gene correlation network analysis(WGCNA).Based on the ORIGs,2 OR7E47P clusters were identified using non-negative matrix factorization(NMF)clustering,and the stability of the clustering was tested by an extreme gradient boosting classifier(XGBoost).LASSO-Cox and stepwise regressions were applied to further select prognostic ORIGs and to construct a predictive model(ORPScore)for immunotherapy.The Botling cohorts and 8 immunotherapy cohorts(the Samstein,Braun,Jung,Gide,IMvigor210,Lauss,Van Allen,and Cho cohorts)were included as independent validation cohorts.Results OR7E47P expression was positively correlated with immune cell infiltration and enrichment of immune-related pathways in LUSC.A total of 57 ORIGs were identified to classify the patients into 2 OR7E47P clusters(Cluster 1 and Cluster 2)with distinct immune,mutation,and stromal programs.Compared to Cluster 1,Cluster 2 had more infiltration by immune and stromal cells,lower mutation rates of driver genes,and higher expression of immune-related proteins.The clustering performed well in the internal and 5 external validation cohorts.Based on the 7 ORIGs(HOPX,STX2,WFS,DUSP22,SLFN13,GGCT,and CCSER2),the ORPScore was constructed to predict the prognosis and the treatment response.In addition,the ORPScore was a better prognostic factor and correlated positively with the immunotherapeutic response in cancer patients.The area under the curve values ranged from 0.584 to 0.805 in the 6 independent immunotherapy cohorts.Conclusion Our study suggests a significant correlation between OR7E47P and TME modulation in LUSC.ORIGs can be applied to molecularly stratify patients,and the ORPScore may serve as a biomarker for clinical decision-making regarding individualized prognostication and immunotherapy.
文摘Background: COVID-19 is a disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Epidemiological data indicated that bacterial complications in COVID-19 would decrease clearance rate of the infecting agent and increase mortality rate. Macrolides such as Azithromycin are usually administered to COVID-19 patients as palliative treatments. Currently, a considerable number of bacterial strains have developed resistance to various antibiotics, especially macrolides. Resistance is reported to be due to possession of mefA, ermB, and mphA genes by Gram positive and Gram negative bacteria. Therefore, this study determined antibiotic resistance patterns and identify mefA, ermB and mphA macrolide-resistant genes in bacterial pathogens isolated from COVID-19 cases in Ibadan, Nigeria. Methods: 400 Nasopharyngeal samples were collected from symptomatic cases before antibiotic medication;structured questionnaires were administered to collect socio-demographic data of participants. Samples were cultured on Blood, Chocolate, MacConkey and Mannitol salt agar at 37°C for 48 hrs. Bacterial identification was performed using VITEK 2.0 ID cards and API 20E for Gram positive and negative bacteria respectively. Antibiotic Susceptibility Testing was performed using Kirby Bauer disc diffusion methods and VITEK 2.0 AST card kits. DNA of multidrug resistant bacterial isolates was extracted;resistant genes were determined using a polymerase chain reaction with specific primers. Amplified genes were detected using agarose gel electrophoresis. Results: 240 (60%) had bacterial growth and 97 (22.2%) yielded no growth. From the 240 bacterial isolates, 38 (15.83%) were multi-drug resistant including resistance to macrolides (Azithromycin) 20 (52.63%) of which were positive for either mefA or ermB, and none (0.0%) possess mphA gene;14 (36.8%) isolates had mefA gene, 10 (26.3%) isolates carried ermB gene. Conclusion: Multi-drug bacterial resistance including macrolides and quinolones was detected. Only mefA and ermB genes were detected in the bacterial isolates, especially in Gram positive organisms. The detection of mefA and ermB genes in the MDR bacterial isolates raised concern on the use of azithromycin as palliative treatment for COVID-19 symptomatic patients.
文摘Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeutic drugs and targets for diabetes-related sepsis.The research also incorporates traditional physical therapy perspectives,emphasizing the genomic insights gained from exercise therapy in disease management and prevention.Methods:Gene analysis was conducted on the GSE168796 and GSE94717 datasets to identify ER stress-related genes.Gene interactions and immune cell correlations were mapped using GeneCard and STRING databases.A screening of 2,456 compounds from the TCMSP database was performed to identify potential therapeutic agents,with a focus on their docking potential.Techniques such as luciferase reporter gene assay and RNA interference were used to examine the interactions between microRNA-149-5p and MMP9.Results:The study identified 2,006 differentially expressed genes and 616 miRNAs.Key genes like MMP9,TNF-α,and IL1B were linked to an immunosuppressive state.Licorice glycoside E demonstrated high affinity for MMP9,suggesting its potential effectiveness in treating diabetes.The constructed miRNA network highlighted the regulatory roles of MMP9,IL1B,IFNG,and TNF-α.Experimental evidence confirmed the binding of microRNA-149-5p to MMP9,impacting apoptosis in diabetic cells.Conclusion:The findings highlight the regulatory role of microRNA-149-5p in managing MMP9,a crucial gene in diabetes pathophysiology.Licorice glycoside E emerges as a promising treatment option for diabetes,especially targeting MMP9 affected by ER stress.The study also underscores the significance of physical exercise in modulating ER stress pathways in diabetes management,bridging traditional physical therapy and modern scientific understanding.Our study has limitations.It focuses on the microRNA-149-5p-MMP9 network in sepsis,using cell-based methods without animal or clinical trials.Despite strong in vitro findings,in vivo studies are needed to confirm licorice glycoside E’s therapeutic potential and understand the microRNA-149-5p-MMP9 dynamics in real conditions.