Undoped LaAlO3 and 1 at.%Ce:LaAlO3 single crystals were grown by the Czochralski process.Absorption and fluorescence spectra were measured at room temperature.Detailed energy levels structure of Ce:LaAlO3 was determin...Undoped LaAlO3 and 1 at.%Ce:LaAlO3 single crystals were grown by the Czochralski process.Absorption and fluorescence spectra were measured at room temperature.Detailed energy levels structure of Ce:LaAlO3 was determined.In this paper,two viewpoints were provided.The first one is:the energy levels structure of Ce:LaAlO3 is very similar to that of Ce:Lu2(SiO4)O which is a well-known scintillator.In the energy levels structure of Ce:LaAlO3 and Ce:Lu2(SiO4)O,the lowest 5d energy level of Ce 3+ is located below the bottom of the conduction band of host crystal and the other higher 5d energy levels of Ce 3+ are located above the bottom of the conduction band of host crystal.The second one is:Ce:LaAlO3 single crystal may not be suitable for scintillation application;by comparing the energy levels structures of Ce:LaAlO3 and Ce:Lu2(SiO4)O,the large energy difference(1.13 eV)between the two lowest 5d energy levels of Ce 3+ in LaAlO3 is a crucial factor that causes the luminescence quenching.展开更多
Pulling growth technique serves as a popular method to grow congruent melting single crystals with multiscale sizes ranging from micrometers to centimeters.In order to obtain high quality single crystals,the crystal c...Pulling growth technique serves as a popular method to grow congruent melting single crystals with multiscale sizes ranging from micrometers to centimeters.In order to obtain high quality single crystals,the crystal constituents would be arranged at the lattice sites by precisely controlling the crystal growth process.Growing interface is the position where the phase transition of crystal constituents occurs during pulling growth process.The precise control of energy at the growing interface becomes a key technique in pulling growth.In this work,we review some recent advances of pulling technique towards rare earth single crystal growth.In Czochralski pulling growth,the optimized growth parameters were designed for rare earth ions doped Y_3Al_5O_(12)and Ce:(Lu_(1-x)Y_x)_2Si O_5on the basis of anisotropic chemical bonding and isotropic mass transfer calculations at the growing interface.The fast growth of high quality rare earth single crystals is realized by controlling crystallization thermodynamics and kinetics in different size zones.On the other hand,the micro pulling down technique can be used for high throughput screening novel rare earth optical crystals.The growth interface control is realized by improving the crucible bottom and temperature field,which favors the growth of rare earth crystal fibers.The rare earth laser crystal fiber can serve as another kind of laser gain medium between conventional bulk single crystal and glass fiber.The future work on pulling technique might focus on the mass production of rare earth single crystals with extreme size and with the size near that of devices.展开更多
文摘Undoped LaAlO3 and 1 at.%Ce:LaAlO3 single crystals were grown by the Czochralski process.Absorption and fluorescence spectra were measured at room temperature.Detailed energy levels structure of Ce:LaAlO3 was determined.In this paper,two viewpoints were provided.The first one is:the energy levels structure of Ce:LaAlO3 is very similar to that of Ce:Lu2(SiO4)O which is a well-known scintillator.In the energy levels structure of Ce:LaAlO3 and Ce:Lu2(SiO4)O,the lowest 5d energy level of Ce 3+ is located below the bottom of the conduction band of host crystal and the other higher 5d energy levels of Ce 3+ are located above the bottom of the conduction band of host crystal.The second one is:Ce:LaAlO3 single crystal may not be suitable for scintillation application;by comparing the energy levels structures of Ce:LaAlO3 and Ce:Lu2(SiO4)O,the large energy difference(1.13 eV)between the two lowest 5d energy levels of Ce 3+ in LaAlO3 is a crucial factor that causes the luminescence quenching.
基金supported by Jilin Province Science and Technology Development Project(Grant No.21521092JH)
文摘Pulling growth technique serves as a popular method to grow congruent melting single crystals with multiscale sizes ranging from micrometers to centimeters.In order to obtain high quality single crystals,the crystal constituents would be arranged at the lattice sites by precisely controlling the crystal growth process.Growing interface is the position where the phase transition of crystal constituents occurs during pulling growth process.The precise control of energy at the growing interface becomes a key technique in pulling growth.In this work,we review some recent advances of pulling technique towards rare earth single crystal growth.In Czochralski pulling growth,the optimized growth parameters were designed for rare earth ions doped Y_3Al_5O_(12)and Ce:(Lu_(1-x)Y_x)_2Si O_5on the basis of anisotropic chemical bonding and isotropic mass transfer calculations at the growing interface.The fast growth of high quality rare earth single crystals is realized by controlling crystallization thermodynamics and kinetics in different size zones.On the other hand,the micro pulling down technique can be used for high throughput screening novel rare earth optical crystals.The growth interface control is realized by improving the crucible bottom and temperature field,which favors the growth of rare earth crystal fibers.The rare earth laser crystal fiber can serve as another kind of laser gain medium between conventional bulk single crystal and glass fiber.The future work on pulling technique might focus on the mass production of rare earth single crystals with extreme size and with the size near that of devices.