Fluorescence properties of Eu 3+ :Y 2SiO 5 have been investigated. Transitions between 5D and 7Fwere were studied with transmission spectra, fluorescence spectra, photoluminescence excitation ( or a...Fluorescence properties of Eu 3+ :Y 2SiO 5 have been investigated. Transitions between 5D and 7Fwere were studied with transmission spectra, fluorescence spectra, photoluminescence excitation ( or absorption ) spectra and site selective fluorescence spectra. The X ray powder diffraction pattern of Eu 3+ :Y 2SiO 5 shows that the crystal belong to monoclinic, and lattice's constants a, b, c and β are obtained by a simulation with the measured diffraction angles.展开更多
Sr3SiO5:Eu2+ yellow phosphors for white LEDs were synthesized by high temperature solid state reaction method under a reductive atmosphere. The crystalline phases were examined with X-ray diffraction (XRD). Luminescen...Sr3SiO5:Eu2+ yellow phosphors for white LEDs were synthesized by high temperature solid state reaction method under a reductive atmosphere. The crystalline phases were examined with X-ray diffraction (XRD). Luminescence properties were studied, and effects of various fluxing agents BaCl2, MgF2, CaF2 and BaF2 on the emission spectra were also studied. The optimal Eu2+ concentration and flux were determined. Sr3SiO5: Eu2+ was obtained by firing the sample on optimal composition and fabrication process. The sa...展开更多
The emission and excitation spectra of Gd2SiO5: Eu3+ were investigated using the VUVbeam line of the Beijing Synchrotron Radiation Facility (BSRF). The experimental results werediscussed in the frame of visible quantu...The emission and excitation spectra of Gd2SiO5: Eu3+ were investigated using the VUVbeam line of the Beijing Synchrotron Radiation Facility (BSRF). The experimental results werediscussed in the frame of visible quantum cutting process involved in Gd3+-Eu3+ system. Upon di-rect excitation into the 6GJ states of Gd3+, two visible photon emissions from Eu3+ were observed.Cursory evaluation proved that Gd2SiO5: Eu3+ is an efficient visible quantum cutter.展开更多
Pulling growth technique serves as a popular method to grow congruent melting single crystals with multiscale sizes ranging from micrometers to centimeters.In order to obtain high quality single crystals,the crystal c...Pulling growth technique serves as a popular method to grow congruent melting single crystals with multiscale sizes ranging from micrometers to centimeters.In order to obtain high quality single crystals,the crystal constituents would be arranged at the lattice sites by precisely controlling the crystal growth process.Growing interface is the position where the phase transition of crystal constituents occurs during pulling growth process.The precise control of energy at the growing interface becomes a key technique in pulling growth.In this work,we review some recent advances of pulling technique towards rare earth single crystal growth.In Czochralski pulling growth,the optimized growth parameters were designed for rare earth ions doped Y_3Al_5O_(12)and Ce:(Lu_(1-x)Y_x)_2Si O_5on the basis of anisotropic chemical bonding and isotropic mass transfer calculations at the growing interface.The fast growth of high quality rare earth single crystals is realized by controlling crystallization thermodynamics and kinetics in different size zones.On the other hand,the micro pulling down technique can be used for high throughput screening novel rare earth optical crystals.The growth interface control is realized by improving the crucible bottom and temperature field,which favors the growth of rare earth crystal fibers.The rare earth laser crystal fiber can serve as another kind of laser gain medium between conventional bulk single crystal and glass fiber.The future work on pulling technique might focus on the mass production of rare earth single crystals with extreme size and with the size near that of devices.展开更多
文摘Fluorescence properties of Eu 3+ :Y 2SiO 5 have been investigated. Transitions between 5D and 7Fwere were studied with transmission spectra, fluorescence spectra, photoluminescence excitation ( or absorption ) spectra and site selective fluorescence spectra. The X ray powder diffraction pattern of Eu 3+ :Y 2SiO 5 shows that the crystal belong to monoclinic, and lattice's constants a, b, c and β are obtained by a simulation with the measured diffraction angles.
基金Project Supported by the Jilin Province Science and Technology Development Projects (20090348 and 20080511)
文摘Sr3SiO5:Eu2+ yellow phosphors for white LEDs were synthesized by high temperature solid state reaction method under a reductive atmosphere. The crystalline phases were examined with X-ray diffraction (XRD). Luminescence properties were studied, and effects of various fluxing agents BaCl2, MgF2, CaF2 and BaF2 on the emission spectra were also studied. The optimal Eu2+ concentration and flux were determined. Sr3SiO5: Eu2+ was obtained by firing the sample on optimal composition and fabrication process. The sa...
基金the National Natural Science Foundation of China(Grant No.59732040)
文摘The emission and excitation spectra of Gd2SiO5: Eu3+ were investigated using the VUVbeam line of the Beijing Synchrotron Radiation Facility (BSRF). The experimental results werediscussed in the frame of visible quantum cutting process involved in Gd3+-Eu3+ system. Upon di-rect excitation into the 6GJ states of Gd3+, two visible photon emissions from Eu3+ were observed.Cursory evaluation proved that Gd2SiO5: Eu3+ is an efficient visible quantum cutter.
基金supported by Jilin Province Science and Technology Development Project(Grant No.21521092JH)
文摘Pulling growth technique serves as a popular method to grow congruent melting single crystals with multiscale sizes ranging from micrometers to centimeters.In order to obtain high quality single crystals,the crystal constituents would be arranged at the lattice sites by precisely controlling the crystal growth process.Growing interface is the position where the phase transition of crystal constituents occurs during pulling growth process.The precise control of energy at the growing interface becomes a key technique in pulling growth.In this work,we review some recent advances of pulling technique towards rare earth single crystal growth.In Czochralski pulling growth,the optimized growth parameters were designed for rare earth ions doped Y_3Al_5O_(12)and Ce:(Lu_(1-x)Y_x)_2Si O_5on the basis of anisotropic chemical bonding and isotropic mass transfer calculations at the growing interface.The fast growth of high quality rare earth single crystals is realized by controlling crystallization thermodynamics and kinetics in different size zones.On the other hand,the micro pulling down technique can be used for high throughput screening novel rare earth optical crystals.The growth interface control is realized by improving the crucible bottom and temperature field,which favors the growth of rare earth crystal fibers.The rare earth laser crystal fiber can serve as another kind of laser gain medium between conventional bulk single crystal and glass fiber.The future work on pulling technique might focus on the mass production of rare earth single crystals with extreme size and with the size near that of devices.