Lu3Al5O12 single crystals grown in pure N2 atmosphere by Czochralski method were annealed in oxidizing atmosphere (air)and reducing atmosphere (H2 + N2), respectively. Effects of annealing treatments on luminesce...Lu3Al5O12 single crystals grown in pure N2 atmosphere by Czochralski method were annealed in oxidizing atmosphere (air)and reducing atmosphere (H2 + N2), respectively. Effects of annealing treatments on luminescence and scintillation properties of the crystals were investigated. The crystal annealed in air showed the highest luminescence intensity under blue light or vacuum ultraviolet excitation in comparison with that annealed in reducing flux or the as-grown crystal. Under X-ray excitation, crystal annealed in reducing atmosphere had the lowest light yield, and crystal annealed in air had the fastest decay time under ^137Cs 662 keV γ-ray excitation. Different annealing treatments resulted in different luminescence and scintillation properties, which might related with oxygen vacancies or defect existing in the crystals.展开更多
Lutetium aluminum garnet (LuAG) precursors doped with different Pr^3+ concentration (0.25at.%, 0.5at.%, 1.0at.%, 3.0at.%, 5.0at.%) were synthesized via a co-precipitation method using ammonium hydrogen carbonate ...Lutetium aluminum garnet (LuAG) precursors doped with different Pr^3+ concentration (0.25at.%, 0.5at.%, 1.0at.%, 3.0at.%, 5.0at.%) were synthesized via a co-precipitation method using ammonium hydrogen carbonate as precipitant. The phase evolution and morphology of the precursor were characterized with X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The resultant LuAG:Pr^3+ powder was sintered into translucent ceramic without any additives in vacuum at 1150 ℃ and then in nitrogen atmosphere at 1700 ℃. spectra of LuAG:Pr^3+ powder and ceramic were measured at room temperature in vacuum ultraviolet (VUV) and ultraviolet (VU) region. For the 5d-4f transition of Pr^3+ ions, dominant emission of ceramic samples peaking round 311 um had higher luminescence intensity. And the host absorption in ceramic samples was not as intensive as that in powder samples. The luminescent intensity of LuAG:Pr^3+ varied with the Pr^3+ contents and the quenching concentration was about 1.0at.% for ceramic and 3.0at.% for powder, which was much higher than 0.24at.% for LuAG:Pr^3+ single crystals. This phenomenon showed that the ceramic had some superiority over single crystals.展开更多
In order to study the spectroscopic properties of vacancies and trap levels in Lu3Al5O12:Ce 3+(LuAG:Ce 3+)crystal,the <111>-oriented LuAG:Ce3 +crystal grown in pure nitrogen atmosphere by Czochralski method was ...In order to study the spectroscopic properties of vacancies and trap levels in Lu3Al5O12:Ce 3+(LuAG:Ce 3+)crystal,the <111>-oriented LuAG:Ce3 +crystal grown in pure nitrogen atmosphere by Czochralski method was annealed in oxidizing atmosphere (air)and reducing atmosphere(H2+N2),respectively.The excitation and emission spectra of LuAG-Ce 3+ crystal after different thermal annealing treatments were measured in the temperature range of 8:450 K,and the thermally stimulated luminescence curves of LuAG-Ce3 +crystal were characterized.It is found that the oxygen vacancies in LuAG:Ce 3+crystal are effectively eliminated through the annealing treatment in air and four trap levels are observed in as-grown LuAG:Ce 3+ crystal with temperature position peaking at 110,210,325 and 475℃,respectively.展开更多
Ytterbium aluminum garnet(Yb3Al5O12)is considered as a promising thermal barrier material.However,the main limitations of Yb3Al5O12 for thermal barrier applications are relative low thermal expansion coefficient and h...Ytterbium aluminum garnet(Yb3Al5O12)is considered as a promising thermal barrier material.However,the main limitations of Yb3Al5O12 for thermal barrier applications are relative low thermal expansion coefficient and high thermal conductivity.In order to overcome these obstacles,herein,a new high entropy(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic was designed,and then powders and bulk were prepared through solid-state reaction method and spark plasma sintering(SPS),respectively.The thermal expansion coefficient of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 is(8.54±0.29)×10^-6 K^-1 at 673 K–1273 K,which is about 9%higher than that of Yb3Al5O12.The thermal conductivity of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic is 3.81 W·m^-1 K^-1 at 300 K,which is about 18%lower than that of Yb3Al5O12.Moreover,there is no reaction between HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 and thermally grown(TG)Al2O3 even at 1600℃.After annealing at 1590℃for 18 h,the average grain size of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 increases only from 1.56μm to 2.27μm.Close thermal expansion coefficient to TG Al2O3,low thermal conductivity,good phase stability,excellent chemical compatibility with TG Al2O3 and slow grain growth rate make HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 promising for thermal barrier applications.展开更多
基金Project supported by the National Natural Science Foundation of China (20571088)the Science and Technology Project of Guangdong Province (2005B10301016, 2006B14801001)
文摘Lu3Al5O12 single crystals grown in pure N2 atmosphere by Czochralski method were annealed in oxidizing atmosphere (air)and reducing atmosphere (H2 + N2), respectively. Effects of annealing treatments on luminescence and scintillation properties of the crystals were investigated. The crystal annealed in air showed the highest luminescence intensity under blue light or vacuum ultraviolet excitation in comparison with that annealed in reducing flux or the as-grown crystal. Under X-ray excitation, crystal annealed in reducing atmosphere had the lowest light yield, and crystal annealed in air had the fastest decay time under ^137Cs 662 keV γ-ray excitation. Different annealing treatments resulted in different luminescence and scintillation properties, which might related with oxygen vacancies or defect existing in the crystals.
基金supported by the National Natural Science Foundation of China (10774140)Funds for International Cooperation and Exchange of the National Nature Science Foundation of China (50711120504)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (20060358054)Special Foundation for Talents of Anhui Province, China (2007Z021)
文摘Lutetium aluminum garnet (LuAG) precursors doped with different Pr^3+ concentration (0.25at.%, 0.5at.%, 1.0at.%, 3.0at.%, 5.0at.%) were synthesized via a co-precipitation method using ammonium hydrogen carbonate as precipitant. The phase evolution and morphology of the precursor were characterized with X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The resultant LuAG:Pr^3+ powder was sintered into translucent ceramic without any additives in vacuum at 1150 ℃ and then in nitrogen atmosphere at 1700 ℃. spectra of LuAG:Pr^3+ powder and ceramic were measured at room temperature in vacuum ultraviolet (VUV) and ultraviolet (VU) region. For the 5d-4f transition of Pr^3+ ions, dominant emission of ceramic samples peaking round 311 um had higher luminescence intensity. And the host absorption in ceramic samples was not as intensive as that in powder samples. The luminescent intensity of LuAG:Pr^3+ varied with the Pr^3+ contents and the quenching concentration was about 1.0at.% for ceramic and 3.0at.% for powder, which was much higher than 0.24at.% for LuAG:Pr^3+ single crystals. This phenomenon showed that the ceramic had some superiority over single crystals.
基金Project(2006B14801001)supported by the Science and Technology Program of Guangdong Province,ChinaProject(20080440804)supported by China Postdoctoral Science FoundationProject(KF0810)supported by the Open Foundation from the State Key Laboratory of Crystal Materials,China
文摘In order to study the spectroscopic properties of vacancies and trap levels in Lu3Al5O12:Ce 3+(LuAG:Ce 3+)crystal,the <111>-oriented LuAG:Ce3 +crystal grown in pure nitrogen atmosphere by Czochralski method was annealed in oxidizing atmosphere (air)and reducing atmosphere(H2+N2),respectively.The excitation and emission spectra of LuAG-Ce 3+ crystal after different thermal annealing treatments were measured in the temperature range of 8:450 K,and the thermally stimulated luminescence curves of LuAG-Ce3 +crystal were characterized.It is found that the oxygen vacancies in LuAG:Ce 3+crystal are effectively eliminated through the annealing treatment in air and four trap levels are observed in as-grown LuAG:Ce 3+ crystal with temperature position peaking at 110,210,325 and 475℃,respectively.
基金financial supported by the National Natural Science Foundation of China(Nos.51672064 and U1435206)。
文摘Ytterbium aluminum garnet(Yb3Al5O12)is considered as a promising thermal barrier material.However,the main limitations of Yb3Al5O12 for thermal barrier applications are relative low thermal expansion coefficient and high thermal conductivity.In order to overcome these obstacles,herein,a new high entropy(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic was designed,and then powders and bulk were prepared through solid-state reaction method and spark plasma sintering(SPS),respectively.The thermal expansion coefficient of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 is(8.54±0.29)×10^-6 K^-1 at 673 K–1273 K,which is about 9%higher than that of Yb3Al5O12.The thermal conductivity of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic is 3.81 W·m^-1 K^-1 at 300 K,which is about 18%lower than that of Yb3Al5O12.Moreover,there is no reaction between HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 and thermally grown(TG)Al2O3 even at 1600℃.After annealing at 1590℃for 18 h,the average grain size of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 increases only from 1.56μm to 2.27μm.Close thermal expansion coefficient to TG Al2O3,low thermal conductivity,good phase stability,excellent chemical compatibility with TG Al2O3 and slow grain growth rate make HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 promising for thermal barrier applications.