Nanocrystalline Gd3Ga5O12:Eu3+ with cubic phase was prepared by a urea homogeneous precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), Fourier transform infrared spectrosc...Nanocrystalline Gd3Ga5O12:Eu3+ with cubic phase was prepared by a urea homogeneous precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric and differential thermal analysis (TG-DTA) and photoluminescence spectra were used to characterize the samples. The effects of the initial solution pH value and urea content on the structure of the sample were studied. The XRD results show that pure phase Gd3Ga5O12 can be obtained at pH =6 and pH =8 of the initial solution. The average crystallite size can be calculated as in the range of 24~33 nm. The average crystallite size decreases with increasing molar ratio of urea to metal ion. The results of excitation spectra and emission spectra show that the emission peaks are ascribed to 5D0→7FJ transitions of Eu3+, and the magnetic dipole transition originated from 5D0 →7F1 of Eu3+ is the strongest; the broad excitation bands belong to change transfer band of Eu?O and the host absorption of Gd3Ga5O12. An efficient energy transfer occurs from Gd3+ to Eu3+.展开更多
A series of Er3+, Tm3+ and Yb3+ doped Gd3Ga5O12 nanocrystals were prepared by a combustion method. The X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and upconversion (UC) emissi...A series of Er3+, Tm3+ and Yb3+ doped Gd3Ga5O12 nanocrystals were prepared by a combustion method. The X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and upconversion (UC) emission spectra were used to characterize the samples. The results of XRD indicate that Gd3Ga5O12:Er3+, Tm3+, Yb3+ nanocrystals with cubic phase can be obtained. Under the excitation of a 980 nm laser, the different rare earth ions doped Gd3Ga5O12 nanoerystals show upconversion luminescence involving the green emission attributed to the ^2H11/2→^4I15/2, 4^S3/2→^4I15/2 transitions of Er3+ ions, respectively, the red emissions assigned to the ^4F9/2→^4I15/2 transitions of Er3+ ions and the ^1G4→^3F4 as well as 3F2,3→^3H6 transitions of Tm3+ ions, respectively, the blue emission attributed to ^1G4→^3H6 transitions of Tm3+ ions, and the near-infrared assigned to the ^3H4→^3H6 transitions of Tm3+ ions. The CIE coordinates for the samples are calculated. The dependence of their upconversion luminescence properties on Yb3+ ion concentration is investieated.展开更多
Lu3Al5O12 single crystals grown in pure N2 atmosphere by Czochralski method were annealed in oxidizing atmosphere (air)and reducing atmosphere (H2 + N2), respectively. Effects of annealing treatments on luminesce...Lu3Al5O12 single crystals grown in pure N2 atmosphere by Czochralski method were annealed in oxidizing atmosphere (air)and reducing atmosphere (H2 + N2), respectively. Effects of annealing treatments on luminescence and scintillation properties of the crystals were investigated. The crystal annealed in air showed the highest luminescence intensity under blue light or vacuum ultraviolet excitation in comparison with that annealed in reducing flux or the as-grown crystal. Under X-ray excitation, crystal annealed in reducing atmosphere had the lowest light yield, and crystal annealed in air had the fastest decay time under ^137Cs 662 keV γ-ray excitation. Different annealing treatments resulted in different luminescence and scintillation properties, which might related with oxygen vacancies or defect existing in the crystals.展开更多
基金financially supported by the Science and Technology Research Project of Department of Education of Liaoning Province,China(No.L2011063)
文摘Nanocrystalline Gd3Ga5O12:Eu3+ with cubic phase was prepared by a urea homogeneous precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric and differential thermal analysis (TG-DTA) and photoluminescence spectra were used to characterize the samples. The effects of the initial solution pH value and urea content on the structure of the sample were studied. The XRD results show that pure phase Gd3Ga5O12 can be obtained at pH =6 and pH =8 of the initial solution. The average crystallite size can be calculated as in the range of 24~33 nm. The average crystallite size decreases with increasing molar ratio of urea to metal ion. The results of excitation spectra and emission spectra show that the emission peaks are ascribed to 5D0→7FJ transitions of Eu3+, and the magnetic dipole transition originated from 5D0 →7F1 of Eu3+ is the strongest; the broad excitation bands belong to change transfer band of Eu?O and the host absorption of Gd3Ga5O12. An efficient energy transfer occurs from Gd3+ to Eu3+.
基金Funded by the Science and Technology Research Project of Department of Education of Liaoning Province,China(No.L2011063)
文摘A series of Er3+, Tm3+ and Yb3+ doped Gd3Ga5O12 nanocrystals were prepared by a combustion method. The X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and upconversion (UC) emission spectra were used to characterize the samples. The results of XRD indicate that Gd3Ga5O12:Er3+, Tm3+, Yb3+ nanocrystals with cubic phase can be obtained. Under the excitation of a 980 nm laser, the different rare earth ions doped Gd3Ga5O12 nanoerystals show upconversion luminescence involving the green emission attributed to the ^2H11/2→^4I15/2, 4^S3/2→^4I15/2 transitions of Er3+ ions, respectively, the red emissions assigned to the ^4F9/2→^4I15/2 transitions of Er3+ ions and the ^1G4→^3F4 as well as 3F2,3→^3H6 transitions of Tm3+ ions, respectively, the blue emission attributed to ^1G4→^3H6 transitions of Tm3+ ions, and the near-infrared assigned to the ^3H4→^3H6 transitions of Tm3+ ions. The CIE coordinates for the samples are calculated. The dependence of their upconversion luminescence properties on Yb3+ ion concentration is investieated.
基金Project supported by the National Natural Science Foundation of China (20571088)the Science and Technology Project of Guangdong Province (2005B10301016, 2006B14801001)
文摘Lu3Al5O12 single crystals grown in pure N2 atmosphere by Czochralski method were annealed in oxidizing atmosphere (air)and reducing atmosphere (H2 + N2), respectively. Effects of annealing treatments on luminescence and scintillation properties of the crystals were investigated. The crystal annealed in air showed the highest luminescence intensity under blue light or vacuum ultraviolet excitation in comparison with that annealed in reducing flux or the as-grown crystal. Under X-ray excitation, crystal annealed in reducing atmosphere had the lowest light yield, and crystal annealed in air had the fastest decay time under ^137Cs 662 keV γ-ray excitation. Different annealing treatments resulted in different luminescence and scintillation properties, which might related with oxygen vacancies or defect existing in the crystals.