Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple c...Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder.展开更多
The position tracking control problem of an electrical cylinder in the presence of dynamic friction nonlinearities in its transmission process is addressed in this paper. First, a torque decou- piing approach is propo...The position tracking control problem of an electrical cylinder in the presence of dynamic friction nonlinearities in its transmission process is addressed in this paper. First, a torque decou- piing approach is proposed to formulate the dynamic model. Secondly, to compensate the friction in the case of servo motion, a modified LuGre model is designed to make a continuous transition be- tween a static model at a high speed and a LuGre model at a low speed to avoid instability due to dis- cretization with a finite sampling rate. To accelerate the speed of estimating time-varying parame- ters, a fast adaption law is proposed by designing an attraction domain around a rough value related to the load force. Finally, a discontinuous projection based adaptive robust controller is synthesized to effectively handle parametric uncertainties for ensuring a guaranteed robust performance. A Lya- punov stability analysis demonstrates that all signals including tracking errors have the guaranteed convergent and bounded performance. Extensive comparative simulations with sinusoidal and point- point tracks are obtained respectively in low and high speeds. The results show the effectiveness and the achievable control performance of the proposed control strategy.展开更多
Adaptive control of servo actuator with nonlinear friction compensation is addressed. LuGre dynamic friction model is adopted to characterize the nonlinear friction and a new kind of slid ing mode observer is designe...Adaptive control of servo actuator with nonlinear friction compensation is addressed. LuGre dynamic friction model is adopted to characterize the nonlinear friction and a new kind of slid ing mode observer is designed to estimate the internal immeasurable state of LuGre model. Based on the estimated friction state, adaptive laws are designed to identify the unknown model parameters and the external disturbances, and the system stability and asymptotic trajectory tracking perform ance are guaranteed by Lyapunov function. The position tracking performance is verified by the ex perimental results.展开更多
Nonlinear friction is a dominant factor afecting the control accuracy of CNC machine tools.This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive...Nonlinear friction is a dominant factor afecting the control accuracy of CNC machine tools.This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive scheme.The nonlinear friction-induced tracking error is frstly modeled and then utilized to establish the nonlinear model predictive scheme,which is subsequently used to optimize the compensation signal by treating the friction-induced tracking error as the optimization objective.During the optimization procedure,the derivative of compensation signal is constrained to avoid vibration of machine tools.In contrast to other existing approaches,the proposed method only needs the parameters of Stribeck friction model and an additional tuning parameter,while fnely identifying the parameters related to the pre-sliding phenomenon is not required.As a result,it greatly facilitates the practical applicability.Both air cutting and real cutting experiments conducted on an in-house developed open-architecture CNC machine tool prove that the proposed method can reduce the tracking errors by more than 56%,and reduce the contour errors by more than 50%.展开更多
In this paper,a hybrid adaptive compensation control scheme is proposed to compensate the friction occurrence and other nonlinear disturbance factors that exist in the high-precision servo system.An adaptive compensat...In this paper,a hybrid adaptive compensation control scheme is proposed to compensate the friction occurrence and other nonlinear disturbance factors that exist in the high-precision servo system.An adaptive compensation controller with a dual-observer structure is designed,while the LuGre dynamic friction model with non-uniform parametric uncertainties characterizes the friction torque.Considering the influence of the periodic disturbance torque and parametric uncertainties,fuzzy systems and a robust term are employed.In this way,the whole system can be treated as a simple linear model after being compensated,then the proportional-derivative (PD) control law is applied to enhancing the control performance.On the basis of Lyapunov stability theory,the global stability and the asymptotic convergence of the tracking error are proved.Numerical simulations demonstrate that the proposed scheme has potentials to restrain the impact of disturbance and improving the tracking performance.展开更多
In order to control the vehicle body position precisely,1/4 nonlinear mathematical model of hydro-pneumatic suspension is established,and the influence of the frictional force in a hydraulic cylinder is analyzed.The f...In order to control the vehicle body position precisely,1/4 nonlinear mathematical model of hydro-pneumatic suspension is established,and the influence of the frictional force in a hydraulic cylinder is analyzed.The friction characteristics are described based on the LuGre model when the piston of a hydraulic actuator is operated at a low speed.Due to the fact parameters of the friction model are effected by the system condition,an adaptive friction compensation(AFC)controller is designed through the Backstepping method,and a dual-observer has been implemented to estimate the friction state.The global asymptotic convergence of a closed-loop system is proven by the Lyapunov theorem.The simulation results show that the positional accuracy of the adaptive friction compensation yiedls a significant improvement in the vehicle height adjustment as compared to the PID control,demonstrating the effectiveness of the adaptive fiction compensation method in the vehicle height adjustable system of the hydro-pneumatic suspension.展开更多
LuGre model has been widely used in friction modeling and compensation.However,the new friction regime,named prestiction regime,cannot be accurately characterized by LuGre model in the latest research.With the extensi...LuGre model has been widely used in friction modeling and compensation.However,the new friction regime,named prestiction regime,cannot be accurately characterized by LuGre model in the latest research.With the extensive experimental observations of friction behaviors in the prestiction,some variables were abstracted to depict the rules in the prestiction regime.Based upon the knowledge of friction modeling,a novel friction model including the presliding regime,the gross sliding regime and the prestiction regime was then presented to overcome the shortcomings of the LuGre model.The reason that LuGre model cannot estimate the prestiction friction was analyzed in theory.Feasibility analysis of the proposed model in modeling the prestiction friction was also addressed.A parameter identification method for the proposed model based on multilevel coordinate search algorithm was presented.The proposed friction compensation strategy was composed of a nonlinear friction observer and a feedforward mechanism.The friction observer was designed to estimate the friction force in the presliding and the gross sliding regimes.And the friction force was estimated based on the model in the prestiction regime.The comparative trajectory tracking experiments were conducted on a simulator of inertially stabilization platforms among three control schemes:the single proportional–derivative(PD)control,the PD with LuGre model-based compensation and the PD with compensator based on the presented model.The experimental results reveal that the control scheme based on the proposed model has the best tracking performance.It reduces the peak-to-peak value(PPV)of tracking error to 0.2 mrad,which is improved almost 50%compared with the PD with LuGre model-based compensation.Compared to the single PD control,it reduces the PPV of error by 66.7%.展开更多
A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parame...A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.50775200,50905156)
文摘Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder.
文摘The position tracking control problem of an electrical cylinder in the presence of dynamic friction nonlinearities in its transmission process is addressed in this paper. First, a torque decou- piing approach is proposed to formulate the dynamic model. Secondly, to compensate the friction in the case of servo motion, a modified LuGre model is designed to make a continuous transition be- tween a static model at a high speed and a LuGre model at a low speed to avoid instability due to dis- cretization with a finite sampling rate. To accelerate the speed of estimating time-varying parame- ters, a fast adaption law is proposed by designing an attraction domain around a rough value related to the load force. Finally, a discontinuous projection based adaptive robust controller is synthesized to effectively handle parametric uncertainties for ensuring a guaranteed robust performance. A Lya- punov stability analysis demonstrates that all signals including tracking errors have the guaranteed convergent and bounded performance. Extensive comparative simulations with sinusoidal and point- point tracks are obtained respectively in low and high speeds. The results show the effectiveness and the achievable control performance of the proposed control strategy.
基金Supported by State Key Laboratory of Explosion Science and Technology(QNKT11-08)
文摘Adaptive control of servo actuator with nonlinear friction compensation is addressed. LuGre dynamic friction model is adopted to characterize the nonlinear friction and a new kind of slid ing mode observer is designed to estimate the internal immeasurable state of LuGre model. Based on the estimated friction state, adaptive laws are designed to identify the unknown model parameters and the external disturbances, and the system stability and asymptotic trajectory tracking perform ance are guaranteed by Lyapunov function. The position tracking performance is verified by the ex perimental results.
基金Supported by National Natural Science Foundation of China(Grant No.51975481)Fundamental Research Funds for the Central Universities of China(Grant No.D5000220061).
文摘Nonlinear friction is a dominant factor afecting the control accuracy of CNC machine tools.This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive scheme.The nonlinear friction-induced tracking error is frstly modeled and then utilized to establish the nonlinear model predictive scheme,which is subsequently used to optimize the compensation signal by treating the friction-induced tracking error as the optimization objective.During the optimization procedure,the derivative of compensation signal is constrained to avoid vibration of machine tools.In contrast to other existing approaches,the proposed method only needs the parameters of Stribeck friction model and an additional tuning parameter,while fnely identifying the parameters related to the pre-sliding phenomenon is not required.As a result,it greatly facilitates the practical applicability.Both air cutting and real cutting experiments conducted on an in-house developed open-architecture CNC machine tool prove that the proposed method can reduce the tracking errors by more than 56%,and reduce the contour errors by more than 50%.
基金Supported by Aeronautical Science Foundation of China(No.20080651016)
文摘In this paper,a hybrid adaptive compensation control scheme is proposed to compensate the friction occurrence and other nonlinear disturbance factors that exist in the high-precision servo system.An adaptive compensation controller with a dual-observer structure is designed,while the LuGre dynamic friction model with non-uniform parametric uncertainties characterizes the friction torque.Considering the influence of the periodic disturbance torque and parametric uncertainties,fuzzy systems and a robust term are employed.In this way,the whole system can be treated as a simple linear model after being compensated,then the proportional-derivative (PD) control law is applied to enhancing the control performance.On the basis of Lyapunov stability theory,the global stability and the asymptotic convergence of the tracking error are proved.Numerical simulations demonstrate that the proposed scheme has potentials to restrain the impact of disturbance and improving the tracking performance.
基金Supported by the National Natural Science Foundation of China(51005018)
文摘In order to control the vehicle body position precisely,1/4 nonlinear mathematical model of hydro-pneumatic suspension is established,and the influence of the frictional force in a hydraulic cylinder is analyzed.The friction characteristics are described based on the LuGre model when the piston of a hydraulic actuator is operated at a low speed.Due to the fact parameters of the friction model are effected by the system condition,an adaptive friction compensation(AFC)controller is designed through the Backstepping method,and a dual-observer has been implemented to estimate the friction state.The global asymptotic convergence of a closed-loop system is proven by the Lyapunov theorem.The simulation results show that the positional accuracy of the adaptive friction compensation yiedls a significant improvement in the vehicle height adjustment as compared to the PID control,demonstrating the effectiveness of the adaptive fiction compensation method in the vehicle height adjustable system of the hydro-pneumatic suspension.
基金Projects(51135009,51105371) supported by the National Natural Science Foundation of China
文摘LuGre model has been widely used in friction modeling and compensation.However,the new friction regime,named prestiction regime,cannot be accurately characterized by LuGre model in the latest research.With the extensive experimental observations of friction behaviors in the prestiction,some variables were abstracted to depict the rules in the prestiction regime.Based upon the knowledge of friction modeling,a novel friction model including the presliding regime,the gross sliding regime and the prestiction regime was then presented to overcome the shortcomings of the LuGre model.The reason that LuGre model cannot estimate the prestiction friction was analyzed in theory.Feasibility analysis of the proposed model in modeling the prestiction friction was also addressed.A parameter identification method for the proposed model based on multilevel coordinate search algorithm was presented.The proposed friction compensation strategy was composed of a nonlinear friction observer and a feedforward mechanism.The friction observer was designed to estimate the friction force in the presliding and the gross sliding regimes.And the friction force was estimated based on the model in the prestiction regime.The comparative trajectory tracking experiments were conducted on a simulator of inertially stabilization platforms among three control schemes:the single proportional–derivative(PD)control,the PD with LuGre model-based compensation and the PD with compensator based on the presented model.The experimental results reveal that the control scheme based on the proposed model has the best tracking performance.It reduces the peak-to-peak value(PPV)of tracking error to 0.2 mrad,which is improved almost 50%compared with the PD with LuGre model-based compensation.Compared to the single PD control,it reduces the PPV of error by 66.7%.
基金supported by Ministry of Knowledge and Economy,Koreathe ITRC(Information Technology Research Center)support program(ⅡTA-2009-C1090-0902-0004)
文摘A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation.