Using carbon tetrachloride (CCl4) as extraction agent, the activated sludge from Tianjin Jizhuangzi Sewage Treatment Plant as inoculum, the test study on biodegradability of lubricants was carried out. The test flas...Using carbon tetrachloride (CCl4) as extraction agent, the activated sludge from Tianjin Jizhuangzi Sewage Treatment Plant as inoculum, the test study on biodegradability of lubricants was carried out. The test flasks containing the mineral medium, the test oil and the inoculum were placed in incubation together with flasks containing poisoned blanks for periods of 0 and 21 days, respectively. Flasks containing the reference materials in place of the test oil were run in parallel. At the end of the incubation period, the contents of the flasks were subjected to sonic vibration, and were acidified and extracted by using CCI4. The extracts were then analysed by infra-red (IR) spectrometer to measure the maximum absorption of the C-H stretch of CH2-CH3 band at wavelength of 2 930 cm^-1. The absorption values were used to calculate the residual oil contents of the poisoned and test flasks. Consequently the biodegradability of the test oil was calculated. The test results indicate that the differences in the biodegradability of test materials in different tests are within 5.5%, and consistent with the data described in Coordinating European Council (CEC) L-33- A-93. The biodegradability of lubricants can be evaluated by this method effectively.展开更多
To meet the increasing needs to move goods and materials, transportation vehicles are logging an increasing number of kilometers each year. With increasing use of these vehicles comes the need to conserve fuel to save...To meet the increasing needs to move goods and materials, transportation vehicles are logging an increasing number of kilometers each year. With increasing use of these vehicles comes the need to conserve fuel to save money and to conserve resources. New engines, transmissions and axles are being developed to further conserve fuel and to provide more efficient power sources. Southwest Research Institute, a leader in global automotive research, regularly performs tests to evaluate the power and fuel economy improvement of drive train hardware and lubricants. The Institute has recently provided services to design, develop, and perform test verification of a dynamometer stand that is capable of evaluating the efficiency of axle lubricants in heavy-duty use.展开更多
The lubricant behaviour at elevated temperatures was investigated by conducting pin-on-disc tests between P20 tool steel and AA7075 aluminium alloy. The effects of temperature, initial lubricant volume, contact pressu...The lubricant behaviour at elevated temperatures was investigated by conducting pin-on-disc tests between P20 tool steel and AA7075 aluminium alloy. The effects of temperature, initial lubricant volume, contact pressure and sliding speed on the lubricant behaviour(i.e. evolutions of the coefficient of friction(COF) and the breakdown phenomenon) were experimentally studied. The evolutions of COF at elevated temperatures consisted of three distinct stages with different friction mechanisms. The first stage(stage Ⅰ) occurred with low friction when the boundary lubrication was present. The second stage(stage Ⅱ) was the transition process in which the COF rapidly increased as the lubricant film thickness decreased to a critical value. In the final plateau stage(stage Ⅲ), lubricant breakdown occurred and intimate contact at the interface led to high friction values. At the low friction stage(stage Ⅰ), the value of COF increased with increasing temperature. The increase in temperature, contact pressure and sliding speed as well as the decrease in initial lubricant volume accelerated the lubricant breakdown.展开更多
In this paper,the formulas of elasto-hydrodynamic traction coefficients of three Chinese aviation lubricating oils,4109,4106 and 4050,were obtained by a great number of elastohydrodynamic traction tests.The nonlinear ...In this paper,the formulas of elasto-hydrodynamic traction coefficients of three Chinese aviation lubricating oils,4109,4106 and 4050,were obtained by a great number of elastohydrodynamic traction tests.The nonlinear dynamics differential equations of high-speed angular contact ball bearing were built on the basis of dynamic theory of rolling bearings and solved by Gear Stiff(GSTIFF) integer algorithm with variable step.The impact of lubricant traction coefficient on cage's dynamic characteristics in high-speed angular contact ball bearing was investigated,and Poincare map was used to analyze the impact of three types of aviation lubricating oils on the dynamic response of cage's mass center.And then,the period of dynamic response of cage's mass center and the slip ratio of cage were used to assess the stability of cage under various working conditions.The results of this paper provide the theoretical basis for the selection and application of aviation lubricating oil.展开更多
The scuffing behavior of hybrid ceramic bearing lubricated with solid is greatly affected by the contact flash temperature. Formulas are dedused using Lee’s asperity flash temperature method, to calculate the flash t...The scuffing behavior of hybrid ceramic bearing lubricated with solid is greatly affected by the contact flash temperature. Formulas are dedused using Lee’s asperity flash temperature method, to calculate the flash temperature of ball bearing lubricated with solid. The maximum flash temperature is calculated for hybrid ceramic ball bearings. The results show that under given conditions, the flash temperature of inner race is higher than that of outer race, the flash temperature of the hybrid ceramic bearing is sensitive to the load, rotational speed and race curvature. The flash temperature of inner race at 20 000 r/min is 66 9% more than that that at 11 000 r/min, and with the load changing from 1.1 kN to 2 kN, the flash temperature inner race goes up to 165 7%. Very common for high speed ball bearings, when curvature coefficients of both inner and outer race change from 0 515 to 0 56, the inner race flash temperature decreases from 421 446℃ to 56 2℃.展开更多
Fuel economy regulations have been issued in many countries to save energy,and it is one of the most essential performance requirements for Passenger Car Motor Oil(PCMO) this decade.The performance is also important t...Fuel economy regulations have been issued in many countries to save energy,and it is one of the most essential performance requirements for Passenger Car Motor Oil(PCMO) this decade.The performance is also important to reduce green house gas(GHG) emissions.Automotive,Oil and Additive industries have been developing fuel economy tests in fired engine for PCMO.The ASTM 5 Car test was started in 1982 and ASTM Sequence Ⅵ series test was also developed by the industries as one of fuel economy tests after the 5 Car test.However,the fired engine(combustion) test condition is more complicated and the combustion mode in engine introduce high variability into a fuel economy measurement.Screening by bench testing is complicated by the difficulty to reproduce friction conditions of all of engine parts.Based on the background,a motored engine friction torque test(MEFT) was developed as one of the solutions for fuel economy screening test.Using a newly developed MEFT,key additive chemistries were evaluated and compared in the test,and it distinguished the differences in additive chemistries,in addition to those in viscosity and friction modifiers.The Sequence Ⅵ-D FEI 1(Seq.Ⅵ-D FEI 1) and chassis dynamometer vehicle tests were also conducted in this study,and the test data has shown an excellent correlation among MEFT,Seq.Ⅵ-D FEI 1 and chassis dynamometer vehicle tests.展开更多
Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces w...Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces were tested under similar contact conditions regarding contact area, normal pressure, sliding speed, lubricant and surface characteristics to calculate the friction coefficient between the tool surface and a high strength low alloy steel sheet HSLA 380. The results showed that friction coefficient varies over a wide range with different lubricating conditions and different sliding velocities. For some sliding velocities, the coefficient of friction is stable and low, while for others it is unstable and higher. Results of the experiments reveal that this novel tribotester is a very useful tool to evaluate and compare the friction between steel sheet and tool surfaces in alloyed steel for cold working applications. The outcomes have only small dispersion within the different test series, which indicates a stable process with good repeatability. The test method enables comparison of different surface finishes and treatments, lubricants and coatings in terms of friction and galling under conditions similar to those found in sheet metal forming processes. The four different types of surfaces considered for this study were grinded, polished, nitrided and quenched/tempered. The main difference among the tested tools in this work was the surface roughness, which was found to have a strong influence on friction.展开更多
To minimize the excessive vibration and prolong the fatigue life of the offshore wind turbine systems, it is of value to control the vibration that is induced within the structure by implementing certain kinds of damp...To minimize the excessive vibration and prolong the fatigue life of the offshore wind turbine systems, it is of value to control the vibration that is induced within the structure by implementing certain kinds of dampers. In this paper, a ball vibration absorber (BVA) is experimentally investigated through a series of shake table tests on a 1/13 scaled wind turbine model. The reductions in top displacement, top acceleration, bottom stress and platform stress of the wind turbine tower system subjected to earthquakes and equivalent wind-wave loads, respectively, with a ball absorber are examined. Cases of the tower with rotating blades are also investigated to validate the efficacy of this damper in mitigating the vibration of an operating wind turbine. The experimental results indicate that the dynamic performance of the tested wind turbine model with a ball absorber is significantly improved compared with that of the uncontrolled structure in terms of the peak response reduction.展开更多
The sliding-rolling mixed motion behavior degrades the ball screw’s precision at different levels.Based on the sliding-rolling mixed motion between ball and screw/nut raceway,the ball screw’s precision loss consider...The sliding-rolling mixed motion behavior degrades the ball screw’s precision at different levels.Based on the sliding-rolling mixed motion between ball and screw/nut raceway,the ball screw’s precision loss considering different given axial loading and rotational speed working conditions was investigated.Since creep and lubrication relate to sliding and rolling motion wear,the creep and lubrication characteristics are analyzed under different working conditions.Besides,the precision loss was calculated considering the sole influence of sliding behavior between ball and screw and compared with the results from other current models.Finally,research on precision loss owing to the sliding-rolling mixed motion behavior was realized under given working conditions,and suitable wear tests were carried out.The analytical results of precision loss are in good agreement with the experimental test conclusions,which is conducive to better predicting the law of precision loss in stable wear period.展开更多
In this work, Automated Ball Indentation (ABI) technique is based on load controlled multiple indentations (at a single penetration location) of a polished surface by a spherical indenter (0.7 to 1.46 mm) and indentat...In this work, Automated Ball Indentation (ABI) technique is based on load controlled multiple indentations (at a single penetration location) of a polished surface by a spherical indenter (0.7 to 1.46 mm) and indentation depth is progressively increased to a maximum user specified limit with intermediate partial unloading. This technique permits measurement of yield strength, stress-strain curve, strength coefficient and strain hardening exponent. ABI Testing was carried out on samples of Zr-Nb2.5 (Pressure Tube Material) with different heat treatment conditions in which temperature was varying (550 degree to 900 degree and retention time was varying 0.5 to 6 hour and furnace cooled. For all these test material and conditions, the ABI derived results were in very good agreement with those from conventional standard test methods.展开更多
In order to achieve higher density of P/M steels using the die wall lubrication compacting method or powder lubricant in warm compaction process, the influence of different process parameters on the green density of w...In order to achieve higher density of P/M steels using the die wall lubrication compacting method or powder lubricant in warm compaction process, the influence of different process parameters on the green density of warm compacted samples was studied. According to the orthogonal test method, the authors systematically study the influence of the different compaction pressure, condition of lubrication and compaction temperature on the green density of the sample in the warm compaction process, and put forward the optimal process parameter of warm compaction experiment. It is found that, a high compaction pressure (≥700 MPa), die wall lubrication combined with a small amount of internal lubricants, and fitting compaction temperature by different condition of lubrication, are the optimal parameters in warm compaction process.展开更多
This study focuses on the evaluation of the differences of physical fitness among soccer players, handball players, and basketball players, and the investigation of the physical fitness structures of those players. Th...This study focuses on the evaluation of the differences of physical fitness among soccer players, handball players, and basketball players, and the investigation of the physical fitness structures of those players. The participants consisted of 160 elite players selected from university teams. Fourteen tests related to health and motor fitness were conducted. The results were subjected to a multivariate analysis of variance (MANOVA) to test the mean vector differences among the three groups of different sport. Nine out of the fourteen tests were of significantly discriminating results regarding to different group, which include side step, abdominal strength, shuttle running, 100m running, pull-up, 1,500m running, trunk flexion, grip strength and broad jump, as determined by a stepwise regression approach. MANOVA showed that there was a significant difference (p<0.001) of the mean vectors of the 9 tests among the three events. Discriminant function analysis showed that three discriminant functions were significant, whose correctness was testified by the classification analysis to be over 80.2%. It is demonstrated that elite handball players are good at agility, elite soccer players are speedy, and successful basketball players apparently possess preeminent muscular strength and endurance.展开更多
Lowering of random blood sugar on a female obese diabetic subject is the core of this case report. Single bout of high intensity exercises using Physioball helps to induce confidence in the subject.
基金China Petroleum & Chemical Corporation (No. 104141)
文摘Using carbon tetrachloride (CCl4) as extraction agent, the activated sludge from Tianjin Jizhuangzi Sewage Treatment Plant as inoculum, the test study on biodegradability of lubricants was carried out. The test flasks containing the mineral medium, the test oil and the inoculum were placed in incubation together with flasks containing poisoned blanks for periods of 0 and 21 days, respectively. Flasks containing the reference materials in place of the test oil were run in parallel. At the end of the incubation period, the contents of the flasks were subjected to sonic vibration, and were acidified and extracted by using CCI4. The extracts were then analysed by infra-red (IR) spectrometer to measure the maximum absorption of the C-H stretch of CH2-CH3 band at wavelength of 2 930 cm^-1. The absorption values were used to calculate the residual oil contents of the poisoned and test flasks. Consequently the biodegradability of the test oil was calculated. The test results indicate that the differences in the biodegradability of test materials in different tests are within 5.5%, and consistent with the data described in Coordinating European Council (CEC) L-33- A-93. The biodegradability of lubricants can be evaluated by this method effectively.
文摘To meet the increasing needs to move goods and materials, transportation vehicles are logging an increasing number of kilometers each year. With increasing use of these vehicles comes the need to conserve fuel to save money and to conserve resources. New engines, transmissions and axles are being developed to further conserve fuel and to provide more efficient power sources. Southwest Research Institute, a leader in global automotive research, regularly performs tests to evaluate the power and fuel economy improvement of drive train hardware and lubricants. The Institute has recently provided services to design, develop, and perform test verification of a dynamometer stand that is capable of evaluating the efficiency of axle lubricants in heavy-duty use.
基金supported by the China Scholarship Council (Grant CSC No. 201706230235): a nonprofit institution that enables talented Chinese students to participate in overseas Ph D programs。
文摘The lubricant behaviour at elevated temperatures was investigated by conducting pin-on-disc tests between P20 tool steel and AA7075 aluminium alloy. The effects of temperature, initial lubricant volume, contact pressure and sliding speed on the lubricant behaviour(i.e. evolutions of the coefficient of friction(COF) and the breakdown phenomenon) were experimentally studied. The evolutions of COF at elevated temperatures consisted of three distinct stages with different friction mechanisms. The first stage(stage Ⅰ) occurred with low friction when the boundary lubrication was present. The second stage(stage Ⅱ) was the transition process in which the COF rapidly increased as the lubricant film thickness decreased to a critical value. In the final plateau stage(stage Ⅲ), lubricant breakdown occurred and intimate contact at the interface led to high friction values. At the low friction stage(stage Ⅰ), the value of COF increased with increasing temperature. The increase in temperature, contact pressure and sliding speed as well as the decrease in initial lubricant volume accelerated the lubricant breakdown.
基金financially co-supported by the National Natural Science Foundation of China(No.U1404514)Henan Outstanding Person Foundation(No.144200510020) of ChinaCollaborative Innovation Center of Major Machine Manufacturing in Liaoning,China
文摘In this paper,the formulas of elasto-hydrodynamic traction coefficients of three Chinese aviation lubricating oils,4109,4106 and 4050,were obtained by a great number of elastohydrodynamic traction tests.The nonlinear dynamics differential equations of high-speed angular contact ball bearing were built on the basis of dynamic theory of rolling bearings and solved by Gear Stiff(GSTIFF) integer algorithm with variable step.The impact of lubricant traction coefficient on cage's dynamic characteristics in high-speed angular contact ball bearing was investigated,and Poincare map was used to analyze the impact of three types of aviation lubricating oils on the dynamic response of cage's mass center.And then,the period of dynamic response of cage's mass center and the slip ratio of cage were used to assess the stability of cage under various working conditions.The results of this paper provide the theoretical basis for the selection and application of aviation lubricating oil.
文摘The scuffing behavior of hybrid ceramic bearing lubricated with solid is greatly affected by the contact flash temperature. Formulas are dedused using Lee’s asperity flash temperature method, to calculate the flash temperature of ball bearing lubricated with solid. The maximum flash temperature is calculated for hybrid ceramic ball bearings. The results show that under given conditions, the flash temperature of inner race is higher than that of outer race, the flash temperature of the hybrid ceramic bearing is sensitive to the load, rotational speed and race curvature. The flash temperature of inner race at 20 000 r/min is 66 9% more than that that at 11 000 r/min, and with the load changing from 1.1 kN to 2 kN, the flash temperature inner race goes up to 165 7%. Very common for high speed ball bearings, when curvature coefficients of both inner and outer race change from 0 515 to 0 56, the inner race flash temperature decreases from 421 446℃ to 56 2℃.
文摘Fuel economy regulations have been issued in many countries to save energy,and it is one of the most essential performance requirements for Passenger Car Motor Oil(PCMO) this decade.The performance is also important to reduce green house gas(GHG) emissions.Automotive,Oil and Additive industries have been developing fuel economy tests in fired engine for PCMO.The ASTM 5 Car test was started in 1982 and ASTM Sequence Ⅵ series test was also developed by the industries as one of fuel economy tests after the 5 Car test.However,the fired engine(combustion) test condition is more complicated and the combustion mode in engine introduce high variability into a fuel economy measurement.Screening by bench testing is complicated by the difficulty to reproduce friction conditions of all of engine parts.Based on the background,a motored engine friction torque test(MEFT) was developed as one of the solutions for fuel economy screening test.Using a newly developed MEFT,key additive chemistries were evaluated and compared in the test,and it distinguished the differences in additive chemistries,in addition to those in viscosity and friction modifiers.The Sequence Ⅵ-D FEI 1(Seq.Ⅵ-D FEI 1) and chassis dynamometer vehicle tests were also conducted in this study,and the test data has shown an excellent correlation among MEFT,Seq.Ⅵ-D FEI 1 and chassis dynamometer vehicle tests.
文摘Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces were tested under similar contact conditions regarding contact area, normal pressure, sliding speed, lubricant and surface characteristics to calculate the friction coefficient between the tool surface and a high strength low alloy steel sheet HSLA 380. The results showed that friction coefficient varies over a wide range with different lubricating conditions and different sliding velocities. For some sliding velocities, the coefficient of friction is stable and low, while for others it is unstable and higher. Results of the experiments reveal that this novel tribotester is a very useful tool to evaluate and compare the friction between steel sheet and tool surfaces in alloyed steel for cold working applications. The outcomes have only small dispersion within the different test series, which indicates a stable process with good repeatability. The test method enables comparison of different surface finishes and treatments, lubricants and coatings in terms of friction and galling under conditions similar to those found in sheet metal forming processes. The four different types of surfaces considered for this study were grinded, polished, nitrided and quenched/tempered. The main difference among the tested tools in this work was the surface roughness, which was found to have a strong influence on friction.
文摘To minimize the excessive vibration and prolong the fatigue life of the offshore wind turbine systems, it is of value to control the vibration that is induced within the structure by implementing certain kinds of dampers. In this paper, a ball vibration absorber (BVA) is experimentally investigated through a series of shake table tests on a 1/13 scaled wind turbine model. The reductions in top displacement, top acceleration, bottom stress and platform stress of the wind turbine tower system subjected to earthquakes and equivalent wind-wave loads, respectively, with a ball absorber are examined. Cases of the tower with rotating blades are also investigated to validate the efficacy of this damper in mitigating the vibration of an operating wind turbine. The experimental results indicate that the dynamic performance of the tested wind turbine model with a ball absorber is significantly improved compared with that of the uncontrolled structure in terms of the peak response reduction.
基金Project(51975012)supported by the National Natural Science Foundation of ChinaProject(Z1511000003150138)supported by the Beijing Nova Program,China+1 种基金Project(Z191100001119010)supported by the Shanghai Sailing Program,ChinaProject(2018ZX04033001-003)supported by the National Science and Technology Major Project,China。
文摘The sliding-rolling mixed motion behavior degrades the ball screw’s precision at different levels.Based on the sliding-rolling mixed motion between ball and screw/nut raceway,the ball screw’s precision loss considering different given axial loading and rotational speed working conditions was investigated.Since creep and lubrication relate to sliding and rolling motion wear,the creep and lubrication characteristics are analyzed under different working conditions.Besides,the precision loss was calculated considering the sole influence of sliding behavior between ball and screw and compared with the results from other current models.Finally,research on precision loss owing to the sliding-rolling mixed motion behavior was realized under given working conditions,and suitable wear tests were carried out.The analytical results of precision loss are in good agreement with the experimental test conclusions,which is conducive to better predicting the law of precision loss in stable wear period.
文摘In this work, Automated Ball Indentation (ABI) technique is based on load controlled multiple indentations (at a single penetration location) of a polished surface by a spherical indenter (0.7 to 1.46 mm) and indentation depth is progressively increased to a maximum user specified limit with intermediate partial unloading. This technique permits measurement of yield strength, stress-strain curve, strength coefficient and strain hardening exponent. ABI Testing was carried out on samples of Zr-Nb2.5 (Pressure Tube Material) with different heat treatment conditions in which temperature was varying (550 degree to 900 degree and retention time was varying 0.5 to 6 hour and furnace cooled. For all these test material and conditions, the ABI derived results were in very good agreement with those from conventional standard test methods.
基金the National Scientific and Technological Project(No.MKPT-2004-09ZD)the Innovative Engineering Program of Central South University
文摘In order to achieve higher density of P/M steels using the die wall lubrication compacting method or powder lubricant in warm compaction process, the influence of different process parameters on the green density of warm compacted samples was studied. According to the orthogonal test method, the authors systematically study the influence of the different compaction pressure, condition of lubrication and compaction temperature on the green density of the sample in the warm compaction process, and put forward the optimal process parameter of warm compaction experiment. It is found that, a high compaction pressure (≥700 MPa), die wall lubrication combined with a small amount of internal lubricants, and fitting compaction temperature by different condition of lubrication, are the optimal parameters in warm compaction process.
文摘This study focuses on the evaluation of the differences of physical fitness among soccer players, handball players, and basketball players, and the investigation of the physical fitness structures of those players. The participants consisted of 160 elite players selected from university teams. Fourteen tests related to health and motor fitness were conducted. The results were subjected to a multivariate analysis of variance (MANOVA) to test the mean vector differences among the three groups of different sport. Nine out of the fourteen tests were of significantly discriminating results regarding to different group, which include side step, abdominal strength, shuttle running, 100m running, pull-up, 1,500m running, trunk flexion, grip strength and broad jump, as determined by a stepwise regression approach. MANOVA showed that there was a significant difference (p<0.001) of the mean vectors of the 9 tests among the three events. Discriminant function analysis showed that three discriminant functions were significant, whose correctness was testified by the classification analysis to be over 80.2%. It is demonstrated that elite handball players are good at agility, elite soccer players are speedy, and successful basketball players apparently possess preeminent muscular strength and endurance.
文摘Lowering of random blood sugar on a female obese diabetic subject is the core of this case report. Single bout of high intensity exercises using Physioball helps to induce confidence in the subject.