期刊文献+
共找到592篇文章
< 1 2 30 >
每页显示 20 50 100
Method of ameliorating the lubrication and friction performance of an engine based on different microtextures
1
作者 Nguyen Van Liem Zhang Jianrun Jiao Renqiang 《Journal of Southeast University(English Edition)》 EI CAS 2021年第4期365-371,共7页
A design of different microtextures on the surface of the crankpin bearing(CB)is proposed to ameliorate the lubrication and friction performance(LFP)of engines.On the basis of the CB s hydrodynamic lubrication model,t... A design of different microtextures on the surface of the crankpin bearing(CB)is proposed to ameliorate the lubrication and friction performance(LFP)of engines.On the basis of the CB s hydrodynamic lubrication model,the bearing surface of CB using different microtextures,such as wedge-shaped textures(WSTs),square textures(STs),circular textures(CTs),and combined square-circular textures(CSCTs),is simulated and assessed under various external loads of the CB at an engine speed of 2000 r/min.The pressure of the oil film,the frictional force,the force of the solid asperity contact,and the friction coefficient of the CB are used as objective functions.Results indicate that the bearing surface designed by the STs remarkably improves the CB s LFP in comparison with other structures of WSTs,CTs,and CSCTs.Particularly,the average values of the frictional force,solid asperity contact,and friction coefficient of the CB using the STs are greatly reduced by 28.5%,14.5%,and 33.2%and by 34.4%,26.3%,and 43.6%in comparison with the optimized CB dimensions and CTs,respectively.Therefore,the application of the STs on the CB surfaces can enhance the LFP of engines. 展开更多
关键词 crankpin bearing MICROTEXTURES lubrication and friction performance(LFP) TEXTURE
下载PDF
Experimental Study on Influence of Dimples on Lubrication Performance of Glass Fiber-epoxy Resin Composite under Natural Seawater Lubrication 被引量:8
2
作者 WU Shaofeng GAO Dianrong +1 位作者 LIANG Yingna CHEN Bo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期110-117,共8页
Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics... Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/rain. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition. 展开更多
关键词 !bionic non-smooth surface seawater lubrication friction coefficient glass fiber-epoxy resin composite stainless steel 316L
下载PDF
Analysis of lubrication performance for internal meshing gear pair considering vibration 被引量:3
3
作者 JIAN Guang-xiao WANG You-qiang +2 位作者 ZHANG Ping LI Yun-kai LUO Heng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期126-139,共14页
The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-var... The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness.Based on dynamic theory of the gear system,a dynamic model of the planetary gear train was established.The lubrication performances of modified gear systems under vibrations and static loads were analyzed.Compared with other transmission types,the best lubrication effect could be produced by the positive transmission.A thicker lubricating oil film could be formed,and the friction coefficient and oil film flash temperature are the smallest.Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact.For the planetary and inner gears,the increase in the modification coefficient also leads a decrease in the oil film stiffness. 展开更多
关键词 internal meshing gears dynamic model modification coefficient lubrication performance oil film stiffness
下载PDF
Effect of surface roughness on the surface lubrication performance of galvanized steel sheets with a self-lubricated coating 被引量:1
4
作者 YANG Jiayun DONG Hang DAI Yigang 《Baosteel Technical Research》 CAS 2017年第3期43-47,共5页
Four kinds of galvanized steel sheets having different surface roughness values were used to prepare the steel sheets with a self-lubricated coating. The effects of surface roughness on the surface lubrication perform... Four kinds of galvanized steel sheets having different surface roughness values were used to prepare the steel sheets with a self-lubricated coating. The effects of surface roughness on the surface lubrication performance of the steel sheets were examined using a friction coefficient tester. Results revealed large dynamic friction coefficients for the galvanized steel sheets, which increased remarkably with surface roughness. Once the self-lubricated coating was applied, significant drops in the dynamic friction coefficients were measured. After the first stage of the friction test,the coefficients were almost unchanged, which reflected a weak dependence on the surface roughness of the self-lubricated steel sheets. However, the dynamic friction coefficients gradually increased as the test progressed, where these increase clearly correlated with the surface roughness of the self-lubricated steel sheets. 展开更多
关键词 surface roughness self-lubricated coating galvanized steel sheet dynamic friction coefficient
下载PDF
Influence of Non-smooth Surface on Tribological Properties of Glass Fiber-epoxy Resin Composite Sliding against Stainless Steel under Natural Seawater Lubrication 被引量:8
5
作者 WU Shaofeng GAO Dianrong +1 位作者 LIANG Yingna CHEN Bo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1171-1176,共6页
With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawat... With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite(GF/EPR) coupled with stainless steel 316 L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study. 展开更多
关键词 non-smooth surface friction coefficient wear resistance glass fiber-epoxy resin composite seawater lubrication stainless steel 316L
下载PDF
Experimental investigation of friction coefficient in tube hydroforming 被引量:5
6
作者 Hyae Kyung YI Hong Sup YIM +3 位作者 Gun Yeop LEE Sung Mun LEE Gi Suk CHUNG Young-Hoon MOON 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第A01期194-198,共5页
The friction coefficient between tube and die in guide zone of tube hydroforming was obtained. In hydroforming, the tube is expanded by an internal pressure against the tool wall. By pushing the tube through tool, a f... The friction coefficient between tube and die in guide zone of tube hydroforming was obtained. In hydroforming, the tube is expanded by an internal pressure against the tool wall. By pushing the tube through tool, a friction force at the contact surface between the tube and the tool occurs. In guiding zone, the friction coefficients between tube and die can be estimated from the measured axial feeding forces. In expansion zone, the friction coefficients between tube and die can be evaluated from the measured geometries of expanded tubes and FE analysis. 展开更多
关键词 tube hydroforming friction coefficient LUBRICANT axial force internM pressure
下载PDF
Effects of boundary slippage on thin-film lubricationbetween two nonparallel plane plates
7
作者 Shu-Hao Ban Xiao-Yan Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期625-630,共6页
Hydrodynamic lubrications between two plane plates with an intersection angle θ have been investigated us- ing the boundary slippage theory, and relations are obtained between dimensionless pressures and coordinate x... Hydrodynamic lubrications between two plane plates with an intersection angle θ have been investigated us- ing the boundary slippage theory, and relations are obtained between dimensionless pressures and coordinate x, between bearing capacity, friction force, friction coefficient and di- mensionless slipping size factor. The results show that bear- ing capacity of two plane plates without boundary slippage significantly increases with increasing intersection angle θ when 0 〈 θ 〈 1°, whereas decreases with increasing in- tersection angle 0 when θ 〉 1°. The results also show that negative pressure occurs in fluid entrance region and bearing capacity decreases, and friction force and friction coefficient increase with the increase of dimensionless slipping size fac- tor. 展开更多
关键词 Bearing capacity Boundary slippage Dimen-sionless slipping size factor friction coefficient Hydrody-namic lubrication Negative pressure
下载PDF
Effects of surface nanostructure on boundary lubrication using molecular dynamics
8
作者 Ling Pan Hui Yu +1 位作者 Shiping Lu Guobin Lin 《Nanotechnology and Precision Engineering》 CAS CSCD 2021年第3期54-62,共9页
Molecular dynamics simulations are used to study the boundary lubrication behaviors of squalane lubricant between two iron wall structures during shearing at different pressures and temperatures.Boundary lubrication m... Molecular dynamics simulations are used to study the boundary lubrication behaviors of squalane lubricant between two iron wall structures during shearing at different pressures and temperatures.Boundary lubrication models with a smooth iron wall and a nanostructured iron wall,respectively,are constructed,and the density distribution of the lubricating film and the velocity distribution in the shearing process are analyzed.The mechanical response of the solid wall is output,and the friction coefficient is calculated.A tribological test is performed with a UMT-2 tribometer under sliding conditions to evaluate the reliability of the simulation method.The results show that the surface nanostructure has a significant effect on the film thickness and delamination of the lubricating film but little effect on the velocity distribution of the lubricating film.The nano strip groove helps to reduce the friction coefficient of the boundary lubrication system. 展开更多
关键词 Boundary lubrication Rough surface Molecular dynamics Lubricating film friction coefficient
下载PDF
Effects of lubricant's friction coefficient on warm compaction powder metallurgy
9
作者 李元元 倪东惠 +2 位作者 王尚林 朱敏 陈维平 《中国有色金属学会会刊:英文版》 CSCD 2005年第1期14-17,共4页
The correct use of lubricant is the key of warm compaction powder metallurgy. Different lubricants produce different lubrication effects and their optimal application temperature will be different. Three different lub... The correct use of lubricant is the key of warm compaction powder metallurgy. Different lubricants produce different lubrication effects and their optimal application temperature will be different. Three different lubricants were used to study the effects of friction coefficient on warm compaction process. Friction coefficients of these lubricants were measured at temperatures ranging from ambient temperature to 200 ℃. Iron-base samples were prepared using different processing temperatures and their green compact densities were studied. 展开更多
关键词 加热压塑 粉末冶金 摩擦系数 滑润剂
下载PDF
Determination of the Friction Coefficient in the Flat Strip Drawing Test
10
作者 Anvar Makhkamov 《Engineering(科研)》 2021年第11期595-604,共10页
Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces w... Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces were tested under similar contact conditions regarding contact area, normal pressure, sliding speed, lubricant and surface characteristics to calculate the friction coefficient between the tool surface and a high strength low alloy steel sheet HSLA 380. The results showed that friction coefficient varies over a wide range with different lubricating conditions and different sliding velocities. For some sliding velocities, the coefficient of friction is stable and low, while for others it is unstable and higher. Results of the experiments reveal that this novel tribotester is a very useful tool to evaluate and compare the friction between steel sheet and tool surfaces in alloyed steel for cold working applications. The outcomes have only small dispersion within the different test series, which indicates a stable process with good repeatability. The test method enables comparison of different surface finishes and treatments, lubricants and coatings in terms of friction and galling under conditions similar to those found in sheet metal forming processes. The four different types of surfaces considered for this study were grinded, polished, nitrided and quenched/tempered. The main difference among the tested tools in this work was the surface roughness, which was found to have a strong influence on friction. 展开更多
关键词 TRIBOLOGY friction ROUGHNESS Sheet Metal Forming LUBRICANT Steel Sheet Tool Surface coefficient of friction Normal Force Sliding Speed Contact Pressure Strip Drawing Test
下载PDF
Advance and trend of friction study in plastic forming 被引量:9
11
作者 王丹 杨合 李恒 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1263-1272,共10页
Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affe... Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affected by so many factors, great efforts have been made to study the friction mechanism and controlling. The research progress of friction issues in plastic forming was summarized and discussed from four aspects: testing, characterizing, modeling and optimization/controlling. Considering urgent demands for green, efficient and precise forming of high-performance, lightweight and complex components in high-tech industries such as aerospace and automotive, the trends and challenges of friction study in plastic forming were proposed. 展开更多
关键词 plastic forming friction model LUBRICANT friction coefficient
下载PDF
Friction Characteristics of Space Lubricating Oil No.4129 in Rolling and Sliding Contact 被引量:1
12
作者 Wang Yanshuang Cao Jiawei +2 位作者 Li Hang Li Pu Yuan Qianqian 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第2期79-83,共5页
The friction coefficients between the surfaces of a ball and a disc lubricated by a space lubricating oil No.4129 were measured at various operating conditions on a ball-disc friction test rig. Friction characteristic... The friction coefficients between the surfaces of a ball and a disc lubricated by a space lubricating oil No.4129 were measured at various operating conditions on a ball-disc friction test rig. Friction characteristic curves were obtained under sliding and rolling movements at point contact. A new model for calculation of the friction coefficient was presented. The results show that the bigger the load is, the larger the friction coefficient becomes. The rolling speed ranging from 1 m/s to10 m/s has an important effect on the friction coefficient. The friction coefficient increases with the increase in sliding speed and the decrease in rolling speed. The linear variation region of the friction coefficient versus the sliding speed at high rolling speed is wider than that at low rolling speed. The model for calculation of the friction coefficient is accurate for engineering use. 展开更多
关键词 lubricating oil friction coefficient rolling and sliding contact friction characteristic
下载PDF
EFFECT OF FRICTIONAL FORCE ON GEARING CONTACT FATIGUE STRENGTH
13
作者 QI Xiumei GAO Chuangkuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期40-43,共4页
The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fat... The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fatigue tests are completed. The results show that when the film thickness ratio λ 〈1.6, frictional coefficient μ is drastically decreased as λ. rises; Thereafter it decreases smoothly until λ=4.5. When λ〉4.5, however, it goes up again with λ, which indicates that the excessive film thickness ratio will deteriorate gearing contact fatigue strength. At the end, the formulae for determining the frictional coefficients are formed. 展开更多
关键词 Involute spur gear Contact fatigue strength Mixed elastohydrodynamic lubrication frictional coefficient Fatigue tests
下载PDF
Frictional performance of silicon carbide under different lubrication conditions 被引量:5
14
作者 Xingyu ZHAO Ying LIU +1 位作者 Qingfeng WEN Yuming WANG 《Friction》 SCIE EI CAS 2014年第1期58-63,共6页
The frictional performance of materials used in face seals is critical to the sealing performance.Silicon carbide is commonly used in hard rings because of its abrasion resistance,corrosion resistance,and thermal shoc... The frictional performance of materials used in face seals is critical to the sealing performance.Silicon carbide is commonly used in hard rings because of its abrasion resistance,corrosion resistance,and thermal shock resistance.In this study,the frictional performance of silicon carbide,including graphite-added silicon carbide,under water and lubrication-absent conditions was studied by using a Falex-1506 tribotester and different working parameters.In addition,the morphology of the worn surfaces was observed using scanning electron microscopy and the damage was characterized to understand the tribological behavior of different silicon carbides.The results suggest that the friction coefficients decrease with increasing pressure under water lubrication conditions because of the water within the holes on the surface of the materials.The percentage of water lubrication increases,whereas the percentage of solid friction decreases when the pressure increases.Under dry contact conditions,the friction coefficients change negligibly with increasing pressure and graphite-added silicon carbide shows better frictional performance. 展开更多
关键词 Silicon carbide frictional performance water lubrication wear mechanism
原文传递
Optimization of groove texture profile to improve hydrodynamic lubrication performance:Theory and experiments 被引量:20
15
作者 Wei WANG Yongyong HE +3 位作者 Jun ZHAO Junyuan MAO Yutong HU Jianbin LUO 《Friction》 SCIE CSCD 2020年第1期83-94,共12页
It is well known that groove texture with a careful design can be used to enhance the load‐carrying capacity of oil film under the conditions of hydrodynamic lubrication.In this study,a general parametric model was d... It is well known that groove texture with a careful design can be used to enhance the load‐carrying capacity of oil film under the conditions of hydrodynamic lubrication.In this study,a general parametric model was developed,and agenetic algorithm‐sequential quadratic programming hybrid method was adopted to obtain the global‐optimum profile of the groove texture.The optimized profiles at different rotating speeds are all chevrons.The numerical analysis results verified the effect of the optimization.In addition to the numerical optimization,experiments were conducted to validate the superiority of the optimized results.The experimental results show that the optimized groove texture can efficiently reduce the coefficient of friction(COF)and the temperature rise of the specimen.In particular,the optimized groove textures can achieve stable ultra‐low COF values(COF<0.01)under certain conditions. 展开更多
关键词 groove texture hydrodynamic lubrication laser texturing ultra‐low coefficient of friction
原文传递
Study of lubrication behavior of pure water for hydrophobic friction pair 被引量:4
16
作者 MA ZhiZuo ZHANG ChenHui +3 位作者 LIU ShuHai LUO JianBin LU XinChun WEN ShiZhu 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第11期3128-3134,共7页
The perfluorooctyltrichlorosilane molecular layer was self-assembled on glass plate. The tribological properties of the molecular layer in water were studied with the method of ball on disk. An interesting phenomenon ... The perfluorooctyltrichlorosilane molecular layer was self-assembled on glass plate. The tribological properties of the molecular layer in water were studied with the method of ball on disk. An interesting phenomenon was found that low friction coefficients of 0.02―0.08 were obtained when the friction pair was lubricated with only a water droplet. Whereas, when the friction pair was encircled with large amount of water or fully immersed in water, the friction coefficient was higher than that under a droplet lubrication. A mechanism of water droplet lubrication was proposed that the surface tension caused by the solid-liquid-air three-phase interface makes water molecules enter into the contact zone, which separates the two friction surfaces and provides a low friction coefficient. However, water film can hardly form when more water encircles the friction pair, due to the attraction between water molecules. 展开更多
关键词 HYDROPHOBIC surface WATER lubrication friction coefficient
原文传递
Influence of sulfides on the tribological properties of composites produced by pulse electric current sintering 被引量:2
17
作者 Seung Ho Kim 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第1期95-103,共9页
Self-lubricating A1203-15wt% ZrO2 composites with sulfides, such as molybdenum disulfide (MoS2) and tungsten disulfide (WSz) serving as solid lubricants, were fabricated by using the pulse electric current sinteri... Self-lubricating A1203-15wt% ZrO2 composites with sulfides, such as molybdenum disulfide (MoS2) and tungsten disulfide (WSz) serving as solid lubricants, were fabricated by using the pulse electric current sintering (PECS) technique. The coefficient of friction (COF) of the A1203-15wt% ZrO2 composite without/with sulfides was in the range of 0.37-0.48 and 0.27-0.49, respectively. As the amoant of sul- fides increased, the COF and the wear rate decreased. The reduction in COF and wear rate of the sulfide-containing composite is caused by a reduction in shear stresses between the specimen and the tribological medium due to the formation of a lubricating film resulting from the lamellar structure of sulfides located on the worn surface. 展开更多
关键词 ceramic composites coefficient of friction solid lubricants sulfides wear of materials
下载PDF
Effects of crankpin bearing speed and dimension on engine power 被引量:3
18
作者 Nguyen Van Liem Zhang Jianrun +1 位作者 Jiao Renqiang Huang Dacheng 《Journal of Southeast University(English Edition)》 EI CAS 2021年第2期119-127,共9页
A new method combining the slider-crank mechanism dynamic(SCM)and crankpin bearing(CB)lubrication models is proposed to analyze the effects of CB dimensions and engine speed on the lubrication efficiency and friction ... A new method combining the slider-crank mechanism dynamic(SCM)and crankpin bearing(CB)lubrication models is proposed to analyze the effects of CB dimensions and engine speed on the lubrication efficiency and friction power loss(LE-FPL)of an engine.The dynamic and lubrication equations are then solved on the basis of the combined model via an algorithm developed in MATLAB.To enhance the reliability of the research results,the experimental data of combustion gas pressure is applied for simulation.The load bearing capacity(or oil film pressure),friction force,friction coefficient,and eccentricity ratio of the CB are selected as objective functions to evaluate the LE-FPL.The effects of engine speed,bearing width,and bearing radius on the LE-FPL are then evaluated.Results show that reductions in engine speed,bearing width,or bearing radius can decrease the FPL but reduce the LE of the engine and vice versa.In particular,the LE-FPL can effectively be improved by slightly reducing the bearing width and bearing radius or maintaining engine speed at 2000 r/min. 展开更多
关键词 slider-crank mechanism crankpin bearing lubrication performance friction loss
下载PDF
State of the art of friction modelling at interfaces subjected to elastohydrodynamic lubrication(EHL) 被引量:1
19
作者 Zhuming BI Donald W.MUELLER Chris W.J.ZHANG 《Friction》 SCIE EI CAS CSCD 2021年第2期207-227,共21页
Elastohydrodynamic lubrication(EHL)is a type of fluid-film lubrication where hydrodynamic behaviors at contact surfaces are affected by both elastic deformation of surfaces and lubricant viscosity.Modelling of contact... Elastohydrodynamic lubrication(EHL)is a type of fluid-film lubrication where hydrodynamic behaviors at contact surfaces are affected by both elastic deformation of surfaces and lubricant viscosity.Modelling of contact interfaces under EHL is challenging due to high nonlinearity,complexity,and the multi-disciplinary nature.This paper aims to understand the state of the art of computational modelling of EHL by(1)examining the literature on modeling of contact surfaces under boundary and mixed lubricated conditions,(2)emphasizing the methods on the friction prediction occurring to contact surfaces,and(3)exploring the feasibility of using commercially available software tools(especially,Simulia/Abaqus)to predict the friction and wear at contact surfaces of objects with relative reciprocating motions. 展开更多
关键词 elastohydrodynamic lubrication(EHL) lubricant rheology finite element analysis(FEA) friction prediction Simulia/Abaqus surface roughness coefficient of friction(Cof)
原文传递
Effects of h-BN content on properties of Ni-Cr/h-BN composite 被引量:1
20
作者 韦小凤 王日初 +2 位作者 冯艳 彭超群 朱学卫 《Journal of Central South University》 SCIE EI CAS 2011年第5期1334-1339,共6页
Ni-Cr/h-BN self-lubricating composities were prepared by powder metallurgy (P/M) method.The effects of hexagonal boron nitride (h-BN) content on the mechanical and tribological properties of the Ni-Cr/h-BN composites ... Ni-Cr/h-BN self-lubricating composities were prepared by powder metallurgy (P/M) method.The effects of hexagonal boron nitride (h-BN) content on the mechanical and tribological properties of the Ni-Cr/h-BN composites were investigated.The corresponding frictional models were established to analyze the formation of the lubricant h-BN films on the surfaces of the Ni-Cr/h-BN composites.The results show that,when the content of h-BN increases from 5% to 15% (mass fraction),the bending strength of the Ni-Cr/h-BN composite decreases from 96.670 MPa to 17.319 MPa,and the hardness (HB) decreases from 33 to 14.The friction coefficient of the Ni-Cr/h-BN composite decreases firstly from 0.385 to 0.216,and then increases to 0.284,while the wear rate decreases firstly from 4.14×10-9 kg/(N·m) to 1.35×10-9 kg/(N·m),then increases to 2.36×10-9 kg/(N·m).The best comprehensive mechanical and tribological properties can be obtained between 10% and 12% h-BN addition. 展开更多
关键词 Ni-Cr/h-BN composite hexagonal boron nitride solid lubricating film friction coefficient wear rate
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部