A design of different microtextures on the surface of the crankpin bearing(CB)is proposed to ameliorate the lubrication and friction performance(LFP)of engines.On the basis of the CB s hydrodynamic lubrication model,t...A design of different microtextures on the surface of the crankpin bearing(CB)is proposed to ameliorate the lubrication and friction performance(LFP)of engines.On the basis of the CB s hydrodynamic lubrication model,the bearing surface of CB using different microtextures,such as wedge-shaped textures(WSTs),square textures(STs),circular textures(CTs),and combined square-circular textures(CSCTs),is simulated and assessed under various external loads of the CB at an engine speed of 2000 r/min.The pressure of the oil film,the frictional force,the force of the solid asperity contact,and the friction coefficient of the CB are used as objective functions.Results indicate that the bearing surface designed by the STs remarkably improves the CB s LFP in comparison with other structures of WSTs,CTs,and CSCTs.Particularly,the average values of the frictional force,solid asperity contact,and friction coefficient of the CB using the STs are greatly reduced by 28.5%,14.5%,and 33.2%and by 34.4%,26.3%,and 43.6%in comparison with the optimized CB dimensions and CTs,respectively.Therefore,the application of the STs on the CB surfaces can enhance the LFP of engines.展开更多
Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics...Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/rain. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition.展开更多
The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-var...The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness.Based on dynamic theory of the gear system,a dynamic model of the planetary gear train was established.The lubrication performances of modified gear systems under vibrations and static loads were analyzed.Compared with other transmission types,the best lubrication effect could be produced by the positive transmission.A thicker lubricating oil film could be formed,and the friction coefficient and oil film flash temperature are the smallest.Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact.For the planetary and inner gears,the increase in the modification coefficient also leads a decrease in the oil film stiffness.展开更多
Four kinds of galvanized steel sheets having different surface roughness values were used to prepare the steel sheets with a self-lubricated coating. The effects of surface roughness on the surface lubrication perform...Four kinds of galvanized steel sheets having different surface roughness values were used to prepare the steel sheets with a self-lubricated coating. The effects of surface roughness on the surface lubrication performance of the steel sheets were examined using a friction coefficient tester. Results revealed large dynamic friction coefficients for the galvanized steel sheets, which increased remarkably with surface roughness. Once the self-lubricated coating was applied, significant drops in the dynamic friction coefficients were measured. After the first stage of the friction test,the coefficients were almost unchanged, which reflected a weak dependence on the surface roughness of the self-lubricated steel sheets. However, the dynamic friction coefficients gradually increased as the test progressed, where these increase clearly correlated with the surface roughness of the self-lubricated steel sheets.展开更多
With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawat...With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite(GF/EPR) coupled with stainless steel 316 L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.展开更多
The friction coefficient between tube and die in guide zone of tube hydroforming was obtained. In hydroforming, the tube is expanded by an internal pressure against the tool wall. By pushing the tube through tool, a f...The friction coefficient between tube and die in guide zone of tube hydroforming was obtained. In hydroforming, the tube is expanded by an internal pressure against the tool wall. By pushing the tube through tool, a friction force at the contact surface between the tube and the tool occurs. In guiding zone, the friction coefficients between tube and die can be estimated from the measured axial feeding forces. In expansion zone, the friction coefficients between tube and die can be evaluated from the measured geometries of expanded tubes and FE analysis.展开更多
Hydrodynamic lubrications between two plane plates with an intersection angle θ have been investigated us- ing the boundary slippage theory, and relations are obtained between dimensionless pressures and coordinate x...Hydrodynamic lubrications between two plane plates with an intersection angle θ have been investigated us- ing the boundary slippage theory, and relations are obtained between dimensionless pressures and coordinate x, between bearing capacity, friction force, friction coefficient and di- mensionless slipping size factor. The results show that bear- ing capacity of two plane plates without boundary slippage significantly increases with increasing intersection angle θ when 0 〈 θ 〈 1°, whereas decreases with increasing in- tersection angle 0 when θ 〉 1°. The results also show that negative pressure occurs in fluid entrance region and bearing capacity decreases, and friction force and friction coefficient increase with the increase of dimensionless slipping size fac- tor.展开更多
Molecular dynamics simulations are used to study the boundary lubrication behaviors of squalane lubricant between two iron wall structures during shearing at different pressures and temperatures.Boundary lubrication m...Molecular dynamics simulations are used to study the boundary lubrication behaviors of squalane lubricant between two iron wall structures during shearing at different pressures and temperatures.Boundary lubrication models with a smooth iron wall and a nanostructured iron wall,respectively,are constructed,and the density distribution of the lubricating film and the velocity distribution in the shearing process are analyzed.The mechanical response of the solid wall is output,and the friction coefficient is calculated.A tribological test is performed with a UMT-2 tribometer under sliding conditions to evaluate the reliability of the simulation method.The results show that the surface nanostructure has a significant effect on the film thickness and delamination of the lubricating film but little effect on the velocity distribution of the lubricating film.The nano strip groove helps to reduce the friction coefficient of the boundary lubrication system.展开更多
The correct use of lubricant is the key of warm compaction powder metallurgy. Different lubricants produce different lubrication effects and their optimal application temperature will be different. Three different lub...The correct use of lubricant is the key of warm compaction powder metallurgy. Different lubricants produce different lubrication effects and their optimal application temperature will be different. Three different lubricants were used to study the effects of friction coefficient on warm compaction process. Friction coefficients of these lubricants were measured at temperatures ranging from ambient temperature to 200 ℃. Iron-base samples were prepared using different processing temperatures and their green compact densities were studied.展开更多
Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces w...Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces were tested under similar contact conditions regarding contact area, normal pressure, sliding speed, lubricant and surface characteristics to calculate the friction coefficient between the tool surface and a high strength low alloy steel sheet HSLA 380. The results showed that friction coefficient varies over a wide range with different lubricating conditions and different sliding velocities. For some sliding velocities, the coefficient of friction is stable and low, while for others it is unstable and higher. Results of the experiments reveal that this novel tribotester is a very useful tool to evaluate and compare the friction between steel sheet and tool surfaces in alloyed steel for cold working applications. The outcomes have only small dispersion within the different test series, which indicates a stable process with good repeatability. The test method enables comparison of different surface finishes and treatments, lubricants and coatings in terms of friction and galling under conditions similar to those found in sheet metal forming processes. The four different types of surfaces considered for this study were grinded, polished, nitrided and quenched/tempered. The main difference among the tested tools in this work was the surface roughness, which was found to have a strong influence on friction.展开更多
Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affe...Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affected by so many factors, great efforts have been made to study the friction mechanism and controlling. The research progress of friction issues in plastic forming was summarized and discussed from four aspects: testing, characterizing, modeling and optimization/controlling. Considering urgent demands for green, efficient and precise forming of high-performance, lightweight and complex components in high-tech industries such as aerospace and automotive, the trends and challenges of friction study in plastic forming were proposed.展开更多
The friction coefficients between the surfaces of a ball and a disc lubricated by a space lubricating oil No.4129 were measured at various operating conditions on a ball-disc friction test rig. Friction characteristic...The friction coefficients between the surfaces of a ball and a disc lubricated by a space lubricating oil No.4129 were measured at various operating conditions on a ball-disc friction test rig. Friction characteristic curves were obtained under sliding and rolling movements at point contact. A new model for calculation of the friction coefficient was presented. The results show that the bigger the load is, the larger the friction coefficient becomes. The rolling speed ranging from 1 m/s to10 m/s has an important effect on the friction coefficient. The friction coefficient increases with the increase in sliding speed and the decrease in rolling speed. The linear variation region of the friction coefficient versus the sliding speed at high rolling speed is wider than that at low rolling speed. The model for calculation of the friction coefficient is accurate for engineering use.展开更多
The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fat...The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fatigue tests are completed. The results show that when the film thickness ratio λ 〈1.6, frictional coefficient μ is drastically decreased as λ. rises; Thereafter it decreases smoothly until λ=4.5. When λ〉4.5, however, it goes up again with λ, which indicates that the excessive film thickness ratio will deteriorate gearing contact fatigue strength. At the end, the formulae for determining the frictional coefficients are formed.展开更多
The frictional performance of materials used in face seals is critical to the sealing performance.Silicon carbide is commonly used in hard rings because of its abrasion resistance,corrosion resistance,and thermal shoc...The frictional performance of materials used in face seals is critical to the sealing performance.Silicon carbide is commonly used in hard rings because of its abrasion resistance,corrosion resistance,and thermal shock resistance.In this study,the frictional performance of silicon carbide,including graphite-added silicon carbide,under water and lubrication-absent conditions was studied by using a Falex-1506 tribotester and different working parameters.In addition,the morphology of the worn surfaces was observed using scanning electron microscopy and the damage was characterized to understand the tribological behavior of different silicon carbides.The results suggest that the friction coefficients decrease with increasing pressure under water lubrication conditions because of the water within the holes on the surface of the materials.The percentage of water lubrication increases,whereas the percentage of solid friction decreases when the pressure increases.Under dry contact conditions,the friction coefficients change negligibly with increasing pressure and graphite-added silicon carbide shows better frictional performance.展开更多
It is well known that groove texture with a careful design can be used to enhance the load‐carrying capacity of oil film under the conditions of hydrodynamic lubrication.In this study,a general parametric model was d...It is well known that groove texture with a careful design can be used to enhance the load‐carrying capacity of oil film under the conditions of hydrodynamic lubrication.In this study,a general parametric model was developed,and agenetic algorithm‐sequential quadratic programming hybrid method was adopted to obtain the global‐optimum profile of the groove texture.The optimized profiles at different rotating speeds are all chevrons.The numerical analysis results verified the effect of the optimization.In addition to the numerical optimization,experiments were conducted to validate the superiority of the optimized results.The experimental results show that the optimized groove texture can efficiently reduce the coefficient of friction(COF)and the temperature rise of the specimen.In particular,the optimized groove textures can achieve stable ultra‐low COF values(COF<0.01)under certain conditions.展开更多
The perfluorooctyltrichlorosilane molecular layer was self-assembled on glass plate. The tribological properties of the molecular layer in water were studied with the method of ball on disk. An interesting phenomenon ...The perfluorooctyltrichlorosilane molecular layer was self-assembled on glass plate. The tribological properties of the molecular layer in water were studied with the method of ball on disk. An interesting phenomenon was found that low friction coefficients of 0.02―0.08 were obtained when the friction pair was lubricated with only a water droplet. Whereas, when the friction pair was encircled with large amount of water or fully immersed in water, the friction coefficient was higher than that under a droplet lubrication. A mechanism of water droplet lubrication was proposed that the surface tension caused by the solid-liquid-air three-phase interface makes water molecules enter into the contact zone, which separates the two friction surfaces and provides a low friction coefficient. However, water film can hardly form when more water encircles the friction pair, due to the attraction between water molecules.展开更多
Self-lubricating A1203-15wt% ZrO2 composites with sulfides, such as molybdenum disulfide (MoS2) and tungsten disulfide (WSz) serving as solid lubricants, were fabricated by using the pulse electric current sinteri...Self-lubricating A1203-15wt% ZrO2 composites with sulfides, such as molybdenum disulfide (MoS2) and tungsten disulfide (WSz) serving as solid lubricants, were fabricated by using the pulse electric current sintering (PECS) technique. The coefficient of friction (COF) of the A1203-15wt% ZrO2 composite without/with sulfides was in the range of 0.37-0.48 and 0.27-0.49, respectively. As the amoant of sul- fides increased, the COF and the wear rate decreased. The reduction in COF and wear rate of the sulfide-containing composite is caused by a reduction in shear stresses between the specimen and the tribological medium due to the formation of a lubricating film resulting from the lamellar structure of sulfides located on the worn surface.展开更多
A new method combining the slider-crank mechanism dynamic(SCM)and crankpin bearing(CB)lubrication models is proposed to analyze the effects of CB dimensions and engine speed on the lubrication efficiency and friction ...A new method combining the slider-crank mechanism dynamic(SCM)and crankpin bearing(CB)lubrication models is proposed to analyze the effects of CB dimensions and engine speed on the lubrication efficiency and friction power loss(LE-FPL)of an engine.The dynamic and lubrication equations are then solved on the basis of the combined model via an algorithm developed in MATLAB.To enhance the reliability of the research results,the experimental data of combustion gas pressure is applied for simulation.The load bearing capacity(or oil film pressure),friction force,friction coefficient,and eccentricity ratio of the CB are selected as objective functions to evaluate the LE-FPL.The effects of engine speed,bearing width,and bearing radius on the LE-FPL are then evaluated.Results show that reductions in engine speed,bearing width,or bearing radius can decrease the FPL but reduce the LE of the engine and vice versa.In particular,the LE-FPL can effectively be improved by slightly reducing the bearing width and bearing radius or maintaining engine speed at 2000 r/min.展开更多
Elastohydrodynamic lubrication(EHL)is a type of fluid-film lubrication where hydrodynamic behaviors at contact surfaces are affected by both elastic deformation of surfaces and lubricant viscosity.Modelling of contact...Elastohydrodynamic lubrication(EHL)is a type of fluid-film lubrication where hydrodynamic behaviors at contact surfaces are affected by both elastic deformation of surfaces and lubricant viscosity.Modelling of contact interfaces under EHL is challenging due to high nonlinearity,complexity,and the multi-disciplinary nature.This paper aims to understand the state of the art of computational modelling of EHL by(1)examining the literature on modeling of contact surfaces under boundary and mixed lubricated conditions,(2)emphasizing the methods on the friction prediction occurring to contact surfaces,and(3)exploring the feasibility of using commercially available software tools(especially,Simulia/Abaqus)to predict the friction and wear at contact surfaces of objects with relative reciprocating motions.展开更多
Ni-Cr/h-BN self-lubricating composities were prepared by powder metallurgy (P/M) method.The effects of hexagonal boron nitride (h-BN) content on the mechanical and tribological properties of the Ni-Cr/h-BN composites ...Ni-Cr/h-BN self-lubricating composities were prepared by powder metallurgy (P/M) method.The effects of hexagonal boron nitride (h-BN) content on the mechanical and tribological properties of the Ni-Cr/h-BN composites were investigated.The corresponding frictional models were established to analyze the formation of the lubricant h-BN films on the surfaces of the Ni-Cr/h-BN composites.The results show that,when the content of h-BN increases from 5% to 15% (mass fraction),the bending strength of the Ni-Cr/h-BN composite decreases from 96.670 MPa to 17.319 MPa,and the hardness (HB) decreases from 33 to 14.The friction coefficient of the Ni-Cr/h-BN composite decreases firstly from 0.385 to 0.216,and then increases to 0.284,while the wear rate decreases firstly from 4.14×10-9 kg/(N·m) to 1.35×10-9 kg/(N·m),then increases to 2.36×10-9 kg/(N·m).The best comprehensive mechanical and tribological properties can be obtained between 10% and 12% h-BN addition.展开更多
基金The National Key Research and Development Program of China(No.2019YFB2006402)the Open Fund Project of Hubei Key Laboratory of Intelligent Transportation Technology and Device,Hubei Polytechnic University(No.2021XZ107)the Key Scientific Research Project of Hubei Polytechnic University(No.21xjz02A).
文摘A design of different microtextures on the surface of the crankpin bearing(CB)is proposed to ameliorate the lubrication and friction performance(LFP)of engines.On the basis of the CB s hydrodynamic lubrication model,the bearing surface of CB using different microtextures,such as wedge-shaped textures(WSTs),square textures(STs),circular textures(CTs),and combined square-circular textures(CSCTs),is simulated and assessed under various external loads of the CB at an engine speed of 2000 r/min.The pressure of the oil film,the frictional force,the force of the solid asperity contact,and the friction coefficient of the CB are used as objective functions.Results indicate that the bearing surface designed by the STs remarkably improves the CB s LFP in comparison with other structures of WSTs,CTs,and CSCTs.Particularly,the average values of the frictional force,solid asperity contact,and friction coefficient of the CB using the STs are greatly reduced by 28.5%,14.5%,and 33.2%and by 34.4%,26.3%,and 43.6%in comparison with the optimized CB dimensions and CTs,respectively.Therefore,the application of the STs on the CB surfaces can enhance the LFP of engines.
基金Supported by National Natural Science Foundation of China(Grant No.51375421)Key Project of Science and Technology Research of Hebei Province,China(ZD20131027)
文摘Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/rain. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition.
基金Projects(51575289,51705270)supported by the National Natural Science Foundation of China。
文摘The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness.Based on dynamic theory of the gear system,a dynamic model of the planetary gear train was established.The lubrication performances of modified gear systems under vibrations and static loads were analyzed.Compared with other transmission types,the best lubrication effect could be produced by the positive transmission.A thicker lubricating oil film could be formed,and the friction coefficient and oil film flash temperature are the smallest.Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact.For the planetary and inner gears,the increase in the modification coefficient also leads a decrease in the oil film stiffness.
文摘Four kinds of galvanized steel sheets having different surface roughness values were used to prepare the steel sheets with a self-lubricated coating. The effects of surface roughness on the surface lubrication performance of the steel sheets were examined using a friction coefficient tester. Results revealed large dynamic friction coefficients for the galvanized steel sheets, which increased remarkably with surface roughness. Once the self-lubricated coating was applied, significant drops in the dynamic friction coefficients were measured. After the first stage of the friction test,the coefficients were almost unchanged, which reflected a weak dependence on the surface roughness of the self-lubricated steel sheets. However, the dynamic friction coefficients gradually increased as the test progressed, where these increase clearly correlated with the surface roughness of the self-lubricated steel sheets.
基金Supported by National Natural Science Foundation of China(Grant No.51375421)Hebei Provincial Key Project of Science and Technology Research of(ZD20131027)
文摘With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite(GF/EPR) coupled with stainless steel 316 L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.
基金supported by grants-in-aid for the National Core Research Center Program from MEST/KOSEF
文摘The friction coefficient between tube and die in guide zone of tube hydroforming was obtained. In hydroforming, the tube is expanded by an internal pressure against the tool wall. By pushing the tube through tool, a friction force at the contact surface between the tube and the tool occurs. In guiding zone, the friction coefficients between tube and die can be estimated from the measured axial feeding forces. In expansion zone, the friction coefficients between tube and die can be evaluated from the measured geometries of expanded tubes and FE analysis.
文摘Hydrodynamic lubrications between two plane plates with an intersection angle θ have been investigated us- ing the boundary slippage theory, and relations are obtained between dimensionless pressures and coordinate x, between bearing capacity, friction force, friction coefficient and di- mensionless slipping size factor. The results show that bear- ing capacity of two plane plates without boundary slippage significantly increases with increasing intersection angle θ when 0 〈 θ 〈 1°, whereas decreases with increasing in- tersection angle 0 when θ 〉 1°. The results also show that negative pressure occurs in fluid entrance region and bearing capacity decreases, and friction force and friction coefficient increase with the increase of dimensionless slipping size fac- tor.
基金This work was supported by the National Natural Science Foundation of China(Nos.51875105 and 51875106)the Jinjiang Science and Education Project of Fuzhou University(No.2019-JJFDKY-54)the Industry-Academy Cooperation Project of Fujian Province(No.2020H6025).
文摘Molecular dynamics simulations are used to study the boundary lubrication behaviors of squalane lubricant between two iron wall structures during shearing at different pressures and temperatures.Boundary lubrication models with a smooth iron wall and a nanostructured iron wall,respectively,are constructed,and the density distribution of the lubricating film and the velocity distribution in the shearing process are analyzed.The mechanical response of the solid wall is output,and the friction coefficient is calculated.A tribological test is performed with a UMT-2 tribometer under sliding conditions to evaluate the reliability of the simulation method.The results show that the surface nanostructure has a significant effect on the film thickness and delamination of the lubricating film but little effect on the velocity distribution of the lubricating film.The nano strip groove helps to reduce the friction coefficient of the boundary lubrication system.
基金Key Project(50135020) supported by the National Natural Science Foundation of China Project(2001AA337010) sup ported by Hi tech Research and Development Program of China Project(2004B10301018) supported by the Science and Technology Pro gram of Gu
文摘The correct use of lubricant is the key of warm compaction powder metallurgy. Different lubricants produce different lubrication effects and their optimal application temperature will be different. Three different lubricants were used to study the effects of friction coefficient on warm compaction process. Friction coefficients of these lubricants were measured at temperatures ranging from ambient temperature to 200 ℃. Iron-base samples were prepared using different processing temperatures and their green compact densities were studied.
文摘Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces were tested under similar contact conditions regarding contact area, normal pressure, sliding speed, lubricant and surface characteristics to calculate the friction coefficient between the tool surface and a high strength low alloy steel sheet HSLA 380. The results showed that friction coefficient varies over a wide range with different lubricating conditions and different sliding velocities. For some sliding velocities, the coefficient of friction is stable and low, while for others it is unstable and higher. Results of the experiments reveal that this novel tribotester is a very useful tool to evaluate and compare the friction between steel sheet and tool surfaces in alloyed steel for cold working applications. The outcomes have only small dispersion within the different test series, which indicates a stable process with good repeatability. The test method enables comparison of different surface finishes and treatments, lubricants and coatings in terms of friction and galling under conditions similar to those found in sheet metal forming processes. The four different types of surfaces considered for this study were grinded, polished, nitrided and quenched/tempered. The main difference among the tested tools in this work was the surface roughness, which was found to have a strong influence on friction.
基金Projects(50905144,51275415)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the Program for New Century Excellent Talents in University,China
文摘Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affected by so many factors, great efforts have been made to study the friction mechanism and controlling. The research progress of friction issues in plastic forming was summarized and discussed from four aspects: testing, characterizing, modeling and optimization/controlling. Considering urgent demands for green, efficient and precise forming of high-performance, lightweight and complex components in high-tech industries such as aerospace and automotive, the trends and challenges of friction study in plastic forming were proposed.
基金supported by the National Science Foundation of China (51105131)the Excellent Youth Foundation of Henan Scientific Committee (12410050002)the Creative Talent Foundation at Universities of Henan Province (2011HASTIT1016)
文摘The friction coefficients between the surfaces of a ball and a disc lubricated by a space lubricating oil No.4129 were measured at various operating conditions on a ball-disc friction test rig. Friction characteristic curves were obtained under sliding and rolling movements at point contact. A new model for calculation of the friction coefficient was presented. The results show that the bigger the load is, the larger the friction coefficient becomes. The rolling speed ranging from 1 m/s to10 m/s has an important effect on the friction coefficient. The friction coefficient increases with the increase in sliding speed and the decrease in rolling speed. The linear variation region of the friction coefficient versus the sliding speed at high rolling speed is wider than that at low rolling speed. The model for calculation of the friction coefficient is accurate for engineering use.
基金This project is supported by Provincial Natural Science Foundation of Shanxi, China (No. 20041057)Scholarship Council of Shanxi, China (No. 2005-22)
文摘The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fatigue tests are completed. The results show that when the film thickness ratio λ 〈1.6, frictional coefficient μ is drastically decreased as λ. rises; Thereafter it decreases smoothly until λ=4.5. When λ〉4.5, however, it goes up again with λ, which indicates that the excessive film thickness ratio will deteriorate gearing contact fatigue strength. At the end, the formulae for determining the frictional coefficients are formed.
基金supported by the National Basic Rese arch Program of China(973)(Grant No.2009CB724304)the National Natural Science Foundation of China(Grant No.51275268)State Key Laboratory of Tribology(Grant No.SKLT11C4)。
文摘The frictional performance of materials used in face seals is critical to the sealing performance.Silicon carbide is commonly used in hard rings because of its abrasion resistance,corrosion resistance,and thermal shock resistance.In this study,the frictional performance of silicon carbide,including graphite-added silicon carbide,under water and lubrication-absent conditions was studied by using a Falex-1506 tribotester and different working parameters.In addition,the morphology of the worn surfaces was observed using scanning electron microscopy and the damage was characterized to understand the tribological behavior of different silicon carbides.The results suggest that the friction coefficients decrease with increasing pressure under water lubrication conditions because of the water within the holes on the surface of the materials.The percentage of water lubrication increases,whereas the percentage of solid friction decreases when the pressure increases.Under dry contact conditions,the friction coefficients change negligibly with increasing pressure and graphite-added silicon carbide shows better frictional performance.
文摘It is well known that groove texture with a careful design can be used to enhance the load‐carrying capacity of oil film under the conditions of hydrodynamic lubrication.In this study,a general parametric model was developed,and agenetic algorithm‐sequential quadratic programming hybrid method was adopted to obtain the global‐optimum profile of the groove texture.The optimized profiles at different rotating speeds are all chevrons.The numerical analysis results verified the effect of the optimization.In addition to the numerical optimization,experiments were conducted to validate the superiority of the optimized results.The experimental results show that the optimized groove texture can efficiently reduce the coefficient of friction(COF)and the temperature rise of the specimen.In particular,the optimized groove textures can achieve stable ultra‐low COF values(COF<0.01)under certain conditions.
基金Supported by National Natural Science Foundation of China (Grant Nos. 50605034 and 50721004)National Basic Research Program of China ("973" Program) (Grant No. 2007CB607604)
文摘The perfluorooctyltrichlorosilane molecular layer was self-assembled on glass plate. The tribological properties of the molecular layer in water were studied with the method of ball on disk. An interesting phenomenon was found that low friction coefficients of 0.02―0.08 were obtained when the friction pair was lubricated with only a water droplet. Whereas, when the friction pair was encircled with large amount of water or fully immersed in water, the friction coefficient was higher than that under a droplet lubrication. A mechanism of water droplet lubrication was proposed that the surface tension caused by the solid-liquid-air three-phase interface makes water molecules enter into the contact zone, which separates the two friction surfaces and provides a low friction coefficient. However, water film can hardly form when more water encircles the friction pair, due to the attraction between water molecules.
基金financially supported by the Korea Foundation for International Cooperation of Science and Technology(KICOS 2008-0143)the Global Research Laboratory(GRL)Program of the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science,and Technology(MEST)of Korea(No.2010-00339)
文摘Self-lubricating A1203-15wt% ZrO2 composites with sulfides, such as molybdenum disulfide (MoS2) and tungsten disulfide (WSz) serving as solid lubricants, were fabricated by using the pulse electric current sintering (PECS) technique. The coefficient of friction (COF) of the A1203-15wt% ZrO2 composite without/with sulfides was in the range of 0.37-0.48 and 0.27-0.49, respectively. As the amoant of sul- fides increased, the COF and the wear rate decreased. The reduction in COF and wear rate of the sulfide-containing composite is caused by a reduction in shear stresses between the specimen and the tribological medium due to the formation of a lubricating film resulting from the lamellar structure of sulfides located on the worn surface.
基金The National Key Research and Development Plan(No.2019YFB2006402)the Key Project of Scientific Research Plan of Hubei Polytechnic University(No.21xjz02A)the Open Fund Project of Hubei Key Laboratory of Intelligent Transportation Technology and Device,Hubei Polytechnic University(No.2020XY105,2020XZ107).
文摘A new method combining the slider-crank mechanism dynamic(SCM)and crankpin bearing(CB)lubrication models is proposed to analyze the effects of CB dimensions and engine speed on the lubrication efficiency and friction power loss(LE-FPL)of an engine.The dynamic and lubrication equations are then solved on the basis of the combined model via an algorithm developed in MATLAB.To enhance the reliability of the research results,the experimental data of combustion gas pressure is applied for simulation.The load bearing capacity(or oil film pressure),friction force,friction coefficient,and eccentricity ratio of the CB are selected as objective functions to evaluate the LE-FPL.The effects of engine speed,bearing width,and bearing radius on the LE-FPL are then evaluated.Results show that reductions in engine speed,bearing width,or bearing radius can decrease the FPL but reduce the LE of the engine and vice versa.In particular,the LE-FPL can effectively be improved by slightly reducing the bearing width and bearing radius or maintaining engine speed at 2000 r/min.
基金The first author Zhuming Bi would like to acknowledge the sponsorship of Senior Summer Faculty Grant from Purdue University Fort Wayne (PFW) and the Faculty Collaborative Research Grant from Purdue University Fort Wayne (PFW).
文摘Elastohydrodynamic lubrication(EHL)is a type of fluid-film lubrication where hydrodynamic behaviors at contact surfaces are affected by both elastic deformation of surfaces and lubricant viscosity.Modelling of contact interfaces under EHL is challenging due to high nonlinearity,complexity,and the multi-disciplinary nature.This paper aims to understand the state of the art of computational modelling of EHL by(1)examining the literature on modeling of contact surfaces under boundary and mixed lubricated conditions,(2)emphasizing the methods on the friction prediction occurring to contact surfaces,and(3)exploring the feasibility of using commercially available software tools(especially,Simulia/Abaqus)to predict the friction and wear at contact surfaces of objects with relative reciprocating motions.
基金Project(MKPT-03-182) supported by the Ministry of Science and Technology of China
文摘Ni-Cr/h-BN self-lubricating composities were prepared by powder metallurgy (P/M) method.The effects of hexagonal boron nitride (h-BN) content on the mechanical and tribological properties of the Ni-Cr/h-BN composites were investigated.The corresponding frictional models were established to analyze the formation of the lubricant h-BN films on the surfaces of the Ni-Cr/h-BN composites.The results show that,when the content of h-BN increases from 5% to 15% (mass fraction),the bending strength of the Ni-Cr/h-BN composite decreases from 96.670 MPa to 17.319 MPa,and the hardness (HB) decreases from 33 to 14.The friction coefficient of the Ni-Cr/h-BN composite decreases firstly from 0.385 to 0.216,and then increases to 0.284,while the wear rate decreases firstly from 4.14×10-9 kg/(N·m) to 1.35×10-9 kg/(N·m),then increases to 2.36×10-9 kg/(N·m).The best comprehensive mechanical and tribological properties can be obtained between 10% and 12% h-BN addition.