期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Development and Lubricating Properties of Rolling Oil for Stainless Steel Cold Rolling 被引量:4
1
作者 Zhang Xu Wang Yizhu +2 位作者 Yao Wenjing Sun Jianlin Wang Shiting 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2011年第2期57-64,共8页
Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base o... Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base oil and other components were carried out to develop the SK and SD series of rolling oils for cold rolling of stainless steel.The developed oils were used in the stainless steel cold rolling lubrication experiments,and were successfully applied in the actual cold rolling operation of stainless steel.Compared with a foreign product,the tribological properties,the thermal oxidation stability,and the rolling lubrication performance of the developed stainless steel cold rolling oils were studied.Test results showed that the tribological properties of the thereby developed rolling oils and the reference one were almost at the same level,and to some extent the performance of rolling was even better than the foreign product,at the same time the stainless steel sheet could retain its well annealed performance.Meanwhile,within a certain range,the lubrication of the rolling oil became better as its viscosity increased at the same level of saponification value,which could provide a lower friction coefficient,so that a higher maximum reduction ratio of the rolled piece through a constant roll gap and a minimum thickness could be secured.Also,similar phenomena appeared as the saponification value increased at a same viscosity level of the rolling oils. 展开更多
关键词 stainless steel cold rolling oil rolling lubrication FRICTION thermal analysis
下载PDF
Non-linear Dynamics of Inlet Film Thickness during Unsteady Rolling Process 被引量:3
2
作者 FU Kuo ZANG Yong +2 位作者 GAO Zhiying QIN Qin WU Diping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期522-530,共9页
The inlet film thickness directly affects film and stress distribution of rolling interfaces. Unsteady factors, such as unsteady back tension, may disturb the inlet film thickness. However, the current models of unste... The inlet film thickness directly affects film and stress distribution of rolling interfaces. Unsteady factors, such as unsteady back tension, may disturb the inlet film thickness. However, the current models of unsteady inlet film thickness lack unsteady disturbance factors and do not take surface topography into consideration. In this paper, based on the hydrodynamic analysis of inlet zone an unsteady rolling film model which concerns the direction of surface topography is built up. Considering the small fluctuation of inlet angle, absolute reduction, reduction ratio, inlet strip thickness and roll radius as the input variables and the fluctuation of inlet film thickness as the output variable, the non-linear relationship between the input and output is discussed. The discussion results show that there is 180° phase difference between the inlet film thickness and the input variables, such as the fluctuant absolute reduction, the fluctuant reduction ratio and non-uniform inlet strip thickness, but there is no phase difference between unsteady roll radius and the output. The inlet angle, the steady roll radius and the direction of surface topography have significant influence on the fluctuant amplitude of unsteady inlet film thickness. This study proposes an analysis method for unsteady inlet film thickness which takes surface topography and new disturbance factors into consideration. 展开更多
关键词 cold rolling lubricant film inlet zone surface topography unsteady non-linear
下载PDF
Research progress on rolling superlubricity in solid lubricants
3
作者 LI PanPan LI HongXuan +8 位作者 ZHU DongXiang ZHU YongQi KANG FuYan WANG Wan ZHANG YaXin LIU XiaoHong JI Li ZHOU HuiDi CHEN JianMin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第7期1980-1990,共11页
Superlubricity is an ideal lubrication state where friction nearly vanishes between contact interfaces. It has become one of the most important research topics and approaches owing to its significance in reducing ener... Superlubricity is an ideal lubrication state where friction nearly vanishes between contact interfaces. It has become one of the most important research topics and approaches owing to its significance in reducing energy consumption and preventing device failures. As an efficient and universal lubricating principle capable of achieving superlubricity, rolling lubrication has attracted widespread attention in recent years. In this review, the theoretical concept of rolling lubrication and the experimental research progress of spherical/scroll structures are summarized. The review focuses on the possibility of achieving rolling lubrication using spherical/scroll structures(such as spherical fullerenes, carbon nanotubes, and formed and constructed spherical/scroll structures). The challenges in achieving rolling lubrication are summarized, and the possibility of molecular rolling lubrication,as well as its potential applications in superlubrication, are discussed. 展开更多
关键词 spherical/scroll structure rolling lubrication SUPERLUBRICITY FULLERENE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部