视觉同步定位与建图技术常用于室内智能机器人的导航,但是其位姿是以静态环境为前提进行估计的。为了提升视觉即时定位与建图(Simultaneous Localization And Mapping,SLAM)在动态场景中的定位与建图的鲁棒性和实时性,在原ORB-SLAM2基...视觉同步定位与建图技术常用于室内智能机器人的导航,但是其位姿是以静态环境为前提进行估计的。为了提升视觉即时定位与建图(Simultaneous Localization And Mapping,SLAM)在动态场景中的定位与建图的鲁棒性和实时性,在原ORB-SLAM2基础上新增动态区域检测线程和语义点云线程。动态区域检测线程由实例分割网络和光流估计网络组成,实例分割赋予动态场景语义信息的同时生成先验性动态物体的掩膜。为了解决实例分割网络的欠分割问题,采用轻量级光流估计网络辅助检测动态区域,生成准确性更高的动态区域掩膜。将生成的动态区域掩膜传入到跟踪线程中进行实时剔除动态区域特征点,然后使用地图中剩余的静态特征点进行相机的位姿估计并建立语义点云地图。在公开TUM数据集上的实验结果表明,改进后的SLAM系统在保证实时性的前提下,提升了其在动态场景中的定位与建图的鲁棒性。展开更多
在复杂道路场景下,车辆目标之间频繁遮挡、车辆目标之间相似的外观、目标整个运动过程中采用静态预设参数都会引起跟踪准确率下降等问题。该文提出了一种基于车辆外观特征和帧间光流的目标跟踪算法。首先,通过YOLOv5算法中的YOLOv5x网...在复杂道路场景下,车辆目标之间频繁遮挡、车辆目标之间相似的外观、目标整个运动过程中采用静态预设参数都会引起跟踪准确率下降等问题。该文提出了一种基于车辆外观特征和帧间光流的目标跟踪算法。首先,通过YOLOv5算法中的YOLOv5x网络模型获得车辆目标框的位置信息;其次,利用RAFT (recurrent all-pairs field transforms for optical flow)算法计算当前帧和前一帧之间的光流,并根据得到的位置信息对光流图进行裁剪;最后,在卡尔曼滤波过程中利用帧间光流进行补偿得到更精确的运动状态信息,并利用车辆外观特征和交并比特征完成轨迹匹配。实验结果表明,基于车辆外观特征和帧间光流的目标跟踪算法在MOT16数据集上表现良好,相较于跟踪算法DeepSORT,成功跟踪帧数占比提高了1.6%,跟踪准确度提升了1.3%,跟踪精度提升了0.6%,改进的车辆外观特征提取模型准确率在训练集和验证集上分别提高了1.7%、6.3%。因此,基于高精度的车辆外观特征模型结合关联帧间光流的运动状态信息能够有效实现交通场景下的车辆目标跟踪。展开更多
文摘视觉同步定位与建图技术常用于室内智能机器人的导航,但是其位姿是以静态环境为前提进行估计的。为了提升视觉即时定位与建图(Simultaneous Localization And Mapping,SLAM)在动态场景中的定位与建图的鲁棒性和实时性,在原ORB-SLAM2基础上新增动态区域检测线程和语义点云线程。动态区域检测线程由实例分割网络和光流估计网络组成,实例分割赋予动态场景语义信息的同时生成先验性动态物体的掩膜。为了解决实例分割网络的欠分割问题,采用轻量级光流估计网络辅助检测动态区域,生成准确性更高的动态区域掩膜。将生成的动态区域掩膜传入到跟踪线程中进行实时剔除动态区域特征点,然后使用地图中剩余的静态特征点进行相机的位姿估计并建立语义点云地图。在公开TUM数据集上的实验结果表明,改进后的SLAM系统在保证实时性的前提下,提升了其在动态场景中的定位与建图的鲁棒性。
文摘在复杂道路场景下,车辆目标之间频繁遮挡、车辆目标之间相似的外观、目标整个运动过程中采用静态预设参数都会引起跟踪准确率下降等问题。该文提出了一种基于车辆外观特征和帧间光流的目标跟踪算法。首先,通过YOLOv5算法中的YOLOv5x网络模型获得车辆目标框的位置信息;其次,利用RAFT (recurrent all-pairs field transforms for optical flow)算法计算当前帧和前一帧之间的光流,并根据得到的位置信息对光流图进行裁剪;最后,在卡尔曼滤波过程中利用帧间光流进行补偿得到更精确的运动状态信息,并利用车辆外观特征和交并比特征完成轨迹匹配。实验结果表明,基于车辆外观特征和帧间光流的目标跟踪算法在MOT16数据集上表现良好,相较于跟踪算法DeepSORT,成功跟踪帧数占比提高了1.6%,跟踪准确度提升了1.3%,跟踪精度提升了0.6%,改进的车辆外观特征提取模型准确率在训练集和验证集上分别提高了1.7%、6.3%。因此,基于高精度的车辆外观特征模型结合关联帧间光流的运动状态信息能够有效实现交通场景下的车辆目标跟踪。