期刊文献+
共找到266,100篇文章
< 1 2 250 >
每页显示 20 50 100
Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application 被引量:15
1
作者 PAN Chong XUE Dong +2 位作者 XU Yang WANG JinJun WEI RunJie 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第10期60-75,共16页
Lucas-Kanade(LK) algorithm, usually used in optical flow filed, has recently received increasing attention from PIV community due to its advanced calculation efficiency by GPU acceleration. Although applications of th... Lucas-Kanade(LK) algorithm, usually used in optical flow filed, has recently received increasing attention from PIV community due to its advanced calculation efficiency by GPU acceleration. Although applications of this algorithm are continuously emerging,a systematic performance evaluation is still lacking. This forms the primary aim of the present work. Three warping schemes in the family of LK algorithm: forward/inverse/symmetric warping, are evaluated in a prototype flow of a hierarchy of multiple two-dimensional vortices. Second-order Newton descent is also considered here. The accuracy & efficiency of all these LK variants are investigated under a large domain of various influential parameters. It is found that the constant displacement constraint, which is a necessary building block for GPU acceleration, is the most critical issue in affecting LK algorithm's accuracy, which can be somehow ameliorated by using second-order Newton descent. Moreover, symmetric warping outbids the other two warping schemes in accuracy level, robustness to noise, convergence speed and tolerance to displacement gradient, and might be the first choice when applying LK algorithm to PIV measurement. 展开更多
关键词 PIV lucas-kanade (LK) algorithm accuracy performance FFT-PIV algorithm
原文传递
基于Lucas-Kanade稀疏光流算法的奶牛呼吸行为检测 被引量:16
2
作者 宋怀波 吴頔华 +2 位作者 阴旭强 姜波 何东健 《农业工程学报》 EI CAS CSCD 北大核心 2019年第17期215-224,共10页
奶牛呼吸行为的智能检测对于奶牛疾病的自动诊断及奶牛精准养殖具有重要意义。该研究基于Lucas-Kanade稀疏光流算法,提出了一种适合于非结构化养殖环境的无接触式单目标奶牛呼吸行为检测方法。通过在HSV颜色空间完成奶牛目标的提取,然... 奶牛呼吸行为的智能检测对于奶牛疾病的自动诊断及奶牛精准养殖具有重要意义。该研究基于Lucas-Kanade稀疏光流算法,提出了一种适合于非结构化养殖环境的无接触式单目标奶牛呼吸行为检测方法。通过在HSV颜色空间完成奶牛目标的提取,然后通过Canny算子和掩模操作完成奶牛所有花斑边界的检测,再利用Lucas-Kanade稀疏光流算法计算提取奶牛花斑边界光流,最后根据视频序列帧中花斑边界平均光流的方向变化规律实现奶牛呼吸行为的检测。为了验证本研究算法的有效性,利用不同环境下获取的105段共计25200帧数据进行了测试,并与基于整体Lucas-Kanade光流法、整体Horn-Schunck光流法和基于花斑边界的Horn-Schunck光流法进行了对比验证。试验结果表明,该研究算法的帧处理耗时在0.10~0.13s之间,在试验视频上的平均运行时间为14.14s。奶牛呼吸行为检测的准确率为83.33%~100%之间,平均准确率为98.58%。平均运行时间较基于整体Lucas-Kanade光流法的呼吸行为检测方法慢1.60s,较Horn-Schunck整体光流的呼吸行为检测方法快7.30s,较基于花斑边界的Horn-Schunck光流法快9.16s。呼吸行为检测的平均准确率分别高于3种方法1.91、2.36、1.26个百分点。研究结果表明,通过Lucas-Kanade光流法检测奶牛花斑边界平均光流方向变化实现奶牛呼吸行为检测是可行的,该研究可为奶牛热应激行为的自动监测及其他与呼吸相关疾病的远程诊断提供参考。 展开更多
关键词 奶牛 算法 呼吸行为检测 lucas-kanade光流法 花斑边界
下载PDF
基于加权Lucas-Kanade算法的目标跟踪 被引量:4
3
作者 刘松林 牛照东 +1 位作者 陈曾平 曾荣盛 《光电工程》 CAS CSCD 北大核心 2011年第8期67-72,共6页
针对传统的序列图像目标跟踪方法难以适应复杂背景干扰、目标形状变化以及目标位置非规则抖动的问题,提出了一种基于加权Lucas-Kanade算法的目标跟踪新方法。首先引入搜索模板,估计出目标在实时图像中的位置并将其作为加权Lucas-Kanade... 针对传统的序列图像目标跟踪方法难以适应复杂背景干扰、目标形状变化以及目标位置非规则抖动的问题,提出了一种基于加权Lucas-Kanade算法的目标跟踪新方法。首先引入搜索模板,估计出目标在实时图像中的位置并将其作为加权Lucas-Kanade算法的迭代初始值,然后计算权值函数,利用当前模板和初始模板进行两次跟踪,得到目标的准确位置。最后实现了在目标形状及背景变化下的三种模板更新。大量实测数据的实验结果表明,本文所提的方法有效地实现了对地面复杂场景中形变目标的稳定跟踪。 展开更多
关键词 目标跟踪 模板漂移 模板更新 lucas-kanade算法 权值函数
下载PDF
基于图像分割的金字塔Lucas-Kanade光流法提取深度信息 被引量:13
4
作者 李亚楠 赵耀 +2 位作者 林春雨 白慧慧 刘美琴 《铁道学报》 EI CAS CSCD 北大核心 2015年第1期63-68,共6页
在2D到3D视频的转换过程中,深度信息的提取是最关键的问题。本文利用图像分割的金字塔LucasKanade光流法提取2D视频中的深度信息,主要做了如下工作:1是通过计算当前帧的最大运动矢量来决定所需构建的金字塔层数,通过自适应的方式决定金... 在2D到3D视频的转换过程中,深度信息的提取是最关键的问题。本文利用图像分割的金字塔LucasKanade光流法提取2D视频中的深度信息,主要做了如下工作:1是通过计算当前帧的最大运动矢量来决定所需构建的金字塔层数,通过自适应的方式决定金字塔层数可以弥补因金字塔层数过多造成的信息丢失或者因金字塔层数过少而无法满足Lucas-Kanade光流算法的不足;2是在每层金字塔中,利用Mean Shift图像分割后的信息,去除本次迭代计算得到的运动矢量中的坏点,使得深度提取更加准确;3是自适应地调整每层金字塔的迭代次数,使得在实验结果的质量几乎不变的情况下,达到降低时间复杂度的目的;最后通过统计图像分割每类中的深度值对所得到的深度图进行优化,使得最终得到的深度图中物体边缘信息更加清晰。实验结果表明,利用本文算法所得到的场景深度的边缘信息更加清晰,深度图中的坏点明显减少,在降低时间复杂度的同时,得到了较高质量的深度图。 展开更多
关键词 2D转3D视频技术 金字塔 lucas-kanade光流法 Mean Shift图像分割 运动估计 深度信息
下载PDF
基于改进Lucas-Kanade的亚像素级零件图像配准 被引量:3
5
作者 林桂潮 张青 邹湘军 《计算机应用研究》 CSCD 北大核心 2017年第5期1577-1580,1593,共5页
针对工业应用中零件图像配准存在的光照变化和纹理稀少的难题,提出了改进Lucas-Kanade的亚像素级零件图像配准算法。首先根据光照变化和几何变换模型构建了模板与待配准图像间的非线性最小二乘函数;然后依据两幅图像的方向向量一致性和... 针对工业应用中零件图像配准存在的光照变化和纹理稀少的难题,提出了改进Lucas-Kanade的亚像素级零件图像配准算法。首先根据光照变化和几何变换模型构建了模板与待配准图像间的非线性最小二乘函数;然后依据两幅图像的方向向量一致性和边缘特征为函数添加权重,以减少冗余像素点;最后应用Levenberg-Marquardt(LM)算法解算函数最优解,以实现精确图像配准。使用500幅待配准图像进行实验,结果表明该算法对缺少纹理的零件具备光照不变性、配准正确率高且达到亚像素级精度,能够满足工业应用的鲁棒性和精度要求。 展开更多
关键词 图像配准 亚像素级 lucas-kanade LEVENBERG-MARQUARDT
下载PDF
利用PSO估算Lucas-Kanade光流模型的参数 被引量:1
6
作者 李蓉 《郑州大学学报(理学版)》 CAS 北大核心 2013年第3期58-62,共5页
在使用Lucas-Kanade光流法进行目标跟踪时,由于目标本身存在旋转、位移、缩放等情况,导致估计参数偏差大而影响跟踪的准确性.因此提出使用PSO对Lucas-Kanade光流法中参数做最优化处理,估算出有效参数范围,以取代传统的区域求解法.实验... 在使用Lucas-Kanade光流法进行目标跟踪时,由于目标本身存在旋转、位移、缩放等情况,导致估计参数偏差大而影响跟踪的准确性.因此提出使用PSO对Lucas-Kanade光流法中参数做最优化处理,估算出有效参数范围,以取代传统的区域求解法.实验结果表明,该算法能快速有效地跟踪目标. 展开更多
关键词 lucas-kanade 粒子群优化算法 目标跟踪 模板漂移
下载PDF
基于FPGA的Lucas-Kanade算法优化
7
作者 刘东明 刘超 牟海维 《光学仪器》 2014年第3期208-212,218,共6页
在FPGA平台上实现基于光流法的视频运动目标跟踪系统,采用Lucas-Kanade算法进行光流场的计算,在图像预处理阶段提出使用三维高斯滤波代替传统二维高斯滤波,引入相邻像素点在时间轴方向的相关性,增强图像的滤波效果。在3D导数计算阶段提... 在FPGA平台上实现基于光流法的视频运动目标跟踪系统,采用Lucas-Kanade算法进行光流场的计算,在图像预处理阶段提出使用三维高斯滤波代替传统二维高斯滤波,引入相邻像素点在时间轴方向的相关性,增强图像的滤波效果。在3D导数计算阶段提出在求导方向的正交面上进行平滑滤波,并采用匹配的导数和平滑参数,提高光流场计算精度。在FPGA平台上设计多级主流水线加子流水线结构,设计了四端口RAM进行图像缓存,优化了最小二乘矩阵单元和浮点数运算单元,实现了实时视频运动目标跟踪。 展开更多
关键词 lucas-kanade算法 平滑滤波器 FPGA 四端口RAM
下载PDF
基于DM642的金字塔Lucas-Kanade光流法计算速度信息 被引量:1
8
作者 赖泊能 陈熙源 李庆华 《测控技术》 CSCD 2016年第4期145-148,共4页
通过垂直拍摄地面的摄像头连续抓拍两帧图像,从中计算出横纵向速度信息。该设计以TMS320DM642为核心,结合TI的VLIB视频处理库,利用VLIB中的Harris角点提取算法对特征点进行提取,并利用金字塔Lucas-Kanade光流法实现对特征点的大位移跟踪... 通过垂直拍摄地面的摄像头连续抓拍两帧图像,从中计算出横纵向速度信息。该设计以TMS320DM642为核心,结合TI的VLIB视频处理库,利用VLIB中的Harris角点提取算法对特征点进行提取,并利用金字塔Lucas-Kanade光流法实现对特征点的大位移跟踪,对跟踪出来的横纵向位移信息进行筛选并利用帧率与位移之间的关系计算出速度信息。然后,将该设计与在PC机上用OpenCV实现的金字塔Lucas-Kanade光流法和SURF特征点跟踪匹配法进行比较,其结果表明该设计简易可行且具有实时性好的优点。最后在此基础上简要介绍了此设计的应用前景并对设计进行了总结。 展开更多
关键词 DM642 VLIB HARRIS角点 金字塔 lucas-kanade光流法 速度
下载PDF
一种自适应的金字塔式Lucas-Kanade目标跟踪算法 被引量:1
9
作者 唐建宇 《电子技术与软件工程》 2013年第17期225-225,共1页
本文分析了金字塔式Lucas-Kanade算法在金字塔层数过多时可能出现的问题,并提出一种自适应的金字塔式LK目标跟踪算法。通过在金字塔的当前层上对被跟踪目标的运动尺度作出预判断来确定是否需要增加金字塔层数,层数确定之后再进行光流的... 本文分析了金字塔式Lucas-Kanade算法在金字塔层数过多时可能出现的问题,并提出一种自适应的金字塔式LK目标跟踪算法。通过在金字塔的当前层上对被跟踪目标的运动尺度作出预判断来确定是否需要增加金字塔层数,层数确定之后再进行光流的计算;每一对相邻帧都采用自适应的方式来确定合适的金字塔层数,以保证每一步的跟踪都尽可能准确。 展开更多
关键词 自适应lucas-kanade算法 高斯金字塔 跟踪
下载PDF
基于改进PSO的Lucas-Kanade的参数选取 被引量:1
10
作者 李蓉 周维柏 《计算机应用与软件》 CSCD 北大核心 2014年第7期217-220,共4页
利用Lucas-Kanade光流法进行目标跟踪时,目标本身存在旋转、位移、缩放等情况,影响跟踪的准确性。因此提出一种新的算法。该算法先使用改进的PSO估算出一组参数,然后把更新出的参数送回到光流法,再进行一次更新,有效地计算出更合适的参... 利用Lucas-Kanade光流法进行目标跟踪时,目标本身存在旋转、位移、缩放等情况,影响跟踪的准确性。因此提出一种新的算法。该算法先使用改进的PSO估算出一组参数,然后把更新出的参数送回到光流法,再进行一次更新,有效地计算出更合适的参数。实验结果表明,该算法能快速有效的对目标进行跟踪。 展开更多
关键词 lucas-kanade 粒子群优化算法 目标跟踪 模板漂移
下载PDF
Lucas-Kanade图像对齐和反向合成图像对齐实时性的研究
11
作者 殷玉龙 许春雷 李小娟 《电子技术与软件工程》 2014年第11期98-98,共1页
该文分别利用Lucas-Kanade图像对齐算法和反向合成图像对齐算法对同一组实验图像(模板图像和输入图像)进行图像对齐,研究了上述2种图像对齐算法的实时性。实验表明,与LucasKanade图像对齐算法相比,反向合成图像对齐算法具有更快的计算... 该文分别利用Lucas-Kanade图像对齐算法和反向合成图像对齐算法对同一组实验图像(模板图像和输入图像)进行图像对齐,研究了上述2种图像对齐算法的实时性。实验表明,与LucasKanade图像对齐算法相比,反向合成图像对齐算法具有更快的计算速度。反向合成图像对齐算法的实时性比Lucas-Kanade图像对齐算法的实时性好。 展开更多
关键词 图像对齐 lucas-kanade 反向合成仿射变换 实时性
下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:2
12
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
下载PDF
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
13
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing SCHEDULING chimp optimization algorithm whale optimization algorithm
下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
14
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
Rao Algorithms-Based Structure Optimization for Heterogeneous Wireless Sensor Networks 被引量:1
15
作者 Shereen K.Refaay Samia A.Ali +2 位作者 Moumen T.El-Melegy Louai A.Maghrabi Hamdy H.El-Sayed 《Computers, Materials & Continua》 SCIE EI 2024年第1期873-897,共25页
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav... The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station. 展开更多
关键词 Wireless sensor networks Rao algorithms OPTIMIZATION LEACH PEAGSIS
下载PDF
Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection 被引量:1
16
作者 Deng Yang Chong Zhou +2 位作者 Xuemeng Wei Zhikun Chen Zheng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1563-1593,共31页
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel... In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA. 展开更多
关键词 Multi-objective optimization whale optimization algorithm multi-strategy feature selection
下载PDF
Falcon Optimization Algorithm-Based Energy Efficient Communication Protocol for Cluster-Based Vehicular Networks 被引量:1
17
作者 Youseef Alotaibi B.Rajasekar +1 位作者 R.Jayalakshmi Surendran Rajendran 《Computers, Materials & Continua》 SCIE EI 2024年第3期4243-4262,共20页
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect... Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods. 展开更多
关键词 Vehicular networks communication protocol CLUSTERING falcon optimization algorithm ROUTING
下载PDF
Improvement of High-Speed Detection Algorithm for Nonwoven Material Defects Based on Machine Vision 被引量:2
18
作者 LI Chengzu WEI Kehan +4 位作者 ZHAO Yingbo TIAN Xuehui QIAN Yang ZHANG Lu WANG Rongwu 《Journal of Donghua University(English Edition)》 CAS 2024年第4期416-427,共12页
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki... Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production. 展开更多
关键词 defect detection nonwoven materials deep learning object detection algorithm transfer learning halfprecision quantization
下载PDF
Genetic algorithm assisted meta-atom design for high-performance metasurface optics 被引量:1
19
作者 Zhenjie Yu Moxin Li +9 位作者 Zhenyu Xing Hao Gao Zeyang Liu Shiliang Pu Hui Mao Hong Cai Qiang Ma Wenqi Ren Jiang Zhu Cheng Zhang 《Opto-Electronic Science》 2024年第9期15-28,共14页
Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves... Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics. 展开更多
关键词 metasurface metalens Bessel beam metahologram genetic algorithm
下载PDF
Product quality prediction based on RBF optimized by firefly algorithm 被引量:1
20
作者 HAN Huihui WANG Jian +1 位作者 CHEN Sen YAN Manting 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期105-117,共13页
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred... With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality. 展开更多
关键词 product quality prediction data pre-processing radial basis function swarm intelligence optimization algorithm
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部