Particles occur in almost all processes in chemical and life sciences. The particle size and shape influence the process performance and product quality, and in turn they are influenced by the flow behavior of the par...Particles occur in almost all processes in chemical and life sciences. The particle size and shape influence the process performance and product quality, and in turn they are influenced by the flow behavior of the particles during production. Monitoring and controlling such characteristics in multiphase systems to obtain sufficient qualities will greatly facilitate the achievement of reproducible and defined distributions. So far, obtaining this information inline has been challenging, because existing instruments lack measurement precision, being unable to process overlapping signals from different particle phases in highly concentrated multiphase systems. However, recent advances in photo-optics made it possible to monitor such features(particle size distribution(PSD), aspect ratio and particle concentration) with advanced image analysis(IA) in real-time. New analysis workflows as well as single feature extractions from the images using multiple image analysis algorithms allowed the precise real-time measurements of size, shape and concentration of particle collectives even separated from each other in three phase systems. The performances, advantages and drawbacks with other non-photo-optical methods for assessing the particle size distribution are compared and discussed.展开更多
At present,both the point source and the imaging polarization navigation devices only can output the angle information,which means that the velocity information of the carrier cannot be extracted from the polarization...At present,both the point source and the imaging polarization navigation devices only can output the angle information,which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly.Optical flow is an image-based method for calculating the velocity of pixel point movement in an image.However,for ordinary optical flow,the difference in pixel value as well as the calculation accuracy can be reduced in weak light.Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection.In this paper,combining the polarization imaging technique with the traditional optical flow algorithm,a polarization optical flow algorithm is proposed,and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors.This research lays the foundation for day and night all-weather polarization navigation applications in future.展开更多
针对同步定位与地图建立(simultaneous localization and mapping,SLAM)算法在动态环境下存在位姿估计和地图构建误差较大的问题,提出一种光流语义分割方法用于增加动态场景下的可运行性。将ORB-SLAM2系统与YOLOv5模型结合,对传入图像...针对同步定位与地图建立(simultaneous localization and mapping,SLAM)算法在动态环境下存在位姿估计和地图构建误差较大的问题,提出一种光流语义分割方法用于增加动态场景下的可运行性。将ORB-SLAM2系统与YOLOv5模型结合,对传入图像提取特征点的同时将YOLOv5网络模型语义分割后的物体分为高、中、低动态物体。利用运动一致性检测算法,对三种检测物体动态阈值判断,辨别其是否需要剔除特征点,增加ORB-SLAM2算法在动态环境下的运行精度。为加快系统运行速度,用LK光流法加快普通帧与普通帧之间的匹配,其原理为使用LK光流匹配特征点代替ORB特征点匹配,大大的缩小运行时间,同时运行误差变化不大。实验在TUM数据集下测试,平均每一帧提取2000个特征点,在增加LK光流后缩短0.01 s以上,若在900帧数据集下,可缩短9 s.其绝对轨迹误差对比于ORB-SLAM2和DS-SLAM平均提升在95%与30%以上,证明了算法在动态场景下良好的运行精度与鲁棒性。展开更多
基金financially supported by the grants for the project "Smart Process Inspection" (funding code ZF4184501CR5) from the "Zentrales Innovationsprogramm Mittelstand" (ZIM)
文摘Particles occur in almost all processes in chemical and life sciences. The particle size and shape influence the process performance and product quality, and in turn they are influenced by the flow behavior of the particles during production. Monitoring and controlling such characteristics in multiphase systems to obtain sufficient qualities will greatly facilitate the achievement of reproducible and defined distributions. So far, obtaining this information inline has been challenging, because existing instruments lack measurement precision, being unable to process overlapping signals from different particle phases in highly concentrated multiphase systems. However, recent advances in photo-optics made it possible to monitor such features(particle size distribution(PSD), aspect ratio and particle concentration) with advanced image analysis(IA) in real-time. New analysis workflows as well as single feature extractions from the images using multiple image analysis algorithms allowed the precise real-time measurements of size, shape and concentration of particle collectives even separated from each other in three phase systems. The performances, advantages and drawbacks with other non-photo-optical methods for assessing the particle size distribution are compared and discussed.
基金supported by the National Natural Science Foundation of China(Nos.51675076 and 51505062)the Science Fund for Creative Research Groups of NSFC(No.51621064)the Basic scientific research fees for Central Universities(Nos.DUT17GF109 and DUT16TD20)
文摘At present,both the point source and the imaging polarization navigation devices only can output the angle information,which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly.Optical flow is an image-based method for calculating the velocity of pixel point movement in an image.However,for ordinary optical flow,the difference in pixel value as well as the calculation accuracy can be reduced in weak light.Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection.In this paper,combining the polarization imaging technique with the traditional optical flow algorithm,a polarization optical flow algorithm is proposed,and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors.This research lays the foundation for day and night all-weather polarization navigation applications in future.