Video prediction is the problem of generating future frames by exploiting the spatiotemporal correlation from the past frame sequence.It is one of the crucial issues in computer vision and has many real-world applicat...Video prediction is the problem of generating future frames by exploiting the spatiotemporal correlation from the past frame sequence.It is one of the crucial issues in computer vision and has many real-world applications,mainly focused on predicting future scenarios to avoid undesirable outcomes.However,modeling future image content and object is challenging due to the dynamic evolution and complexity of the scene,such as occlusions,camera movements,delay and illumination.Direct frame synthesis or optical-flow estimation are common approaches used by researchers.However,researchers mainly focused on video prediction using one of the approaches.Both methods have limitations,such as direct frame synthesis,usually face blurry prediction due to complex pixel distributions in the scene,and optical-flow estimation,usually produce artifacts due to large object displacements or obstructions in the clip.In this paper,we constructed a deep neural network Frame Prediction Network(FPNet-OF)with multiplebranch inputs(optical flow and original frame)to predict the future video frame by adaptively fusing the future object-motion with the future frame generator.The key idea is to jointly optimize direct RGB frame synthesis and dense optical flow estimation to generate a superior video prediction network.Using various real-world datasets,we experimentally verify that our proposed framework can produce high-level video frame compared to other state-ofthe-art framework.展开更多
基金supported by Incheon NationalUniversity Research Grant in 2017.
文摘Video prediction is the problem of generating future frames by exploiting the spatiotemporal correlation from the past frame sequence.It is one of the crucial issues in computer vision and has many real-world applications,mainly focused on predicting future scenarios to avoid undesirable outcomes.However,modeling future image content and object is challenging due to the dynamic evolution and complexity of the scene,such as occlusions,camera movements,delay and illumination.Direct frame synthesis or optical-flow estimation are common approaches used by researchers.However,researchers mainly focused on video prediction using one of the approaches.Both methods have limitations,such as direct frame synthesis,usually face blurry prediction due to complex pixel distributions in the scene,and optical-flow estimation,usually produce artifacts due to large object displacements or obstructions in the clip.In this paper,we constructed a deep neural network Frame Prediction Network(FPNet-OF)with multiplebranch inputs(optical flow and original frame)to predict the future video frame by adaptively fusing the future object-motion with the future frame generator.The key idea is to jointly optimize direct RGB frame synthesis and dense optical flow estimation to generate a superior video prediction network.Using various real-world datasets,we experimentally verify that our proposed framework can produce high-level video frame compared to other state-ofthe-art framework.
文摘传统人脸识别算法通常把光照处理和姿态校正作为两个相对独立的处理过程,难以取得全局最优识别性能.针对该问题,本文根据人脸的非刚体特性,将仿射变换和分块思想融入线性重构模型中,提出了一种基于仿射最小线性重构误差(Affine Minimum Linear Reconstruction Error,AMLRE)的人脸识别算法,在处理光照问题的同时能够补偿姿态变化造成的局部区域对齐误差,以获得更好的全局识别性能.在公共数据集上的实验结果表明,本文提出的算法对光照和姿态有很好的鲁棒性,同时与现有的人脸识别算法相比,本文的算法具有更高的识别率.