The Dongfang 13-1 is located in the diapiric structure belt of the Yinggehai Basin. The formation pressure of its main gas res- ervoir in the Miocene Huangliu Formation is up to 54.6 MPa (pressure coefficient=l.91) ...The Dongfang 13-1 is located in the diapiric structure belt of the Yinggehai Basin. The formation pressure of its main gas res- ervoir in the Miocene Huangliu Formation is up to 54.6 MPa (pressure coefficient=l.91) and the temperature is as high as 143°C (geothermal gradient 4.36°C/100 m), indicating that it is a typical high-temperature and overpressured gas reservoir. The natural gas is interpreted to be coal-type gas derived from the Miocene mature source rocks containing type Ⅱ2-Ⅲ kero- gens as evidenced by high dryness index of up to 0.98 and heavy carbon isotopes, i.e., the δ13C2 ranging from -30.76%o to -37.52%o and δ13C2 ranging from -25.02%o to -25.62%o. The high temperature and overpressured Miocene petroleum system is related mainly to diapir in the Yinggehai Basin and contains more pore water in the overpressured reservoirs due to under- compaction process. The experimental and calculated results show that the solubility of natural gas in formation water is as high as 10.5 m3/m3 under the temperature and pressure conditions of the Sanya Formation, indicating that at least part of the gas may migrate in the form of water-soluble phase. Meanwhile, the abundant gas source in the Basin makes it possible for the rapid saturation of natural gas in formation water and exsolution of soluble gas. Therefore, the main elements controlling formation of the Dongfang 13-1 gas pool include that (1) the diapir activities and accompanying changes in temperature and pressure accelerate the water-soluble gas exsolution and release a lot of free gas; (2) submarine fan fine sandstone in the Huangliu Formation provides good gas-water segregation and accumulation space; and (3) the overlying overpressured mud rocks act as effective caps. The accumulation mechanism reveals that the high temperatural and high pressure structure belt near the diapir structures has a good potential for large and medium-sized gas field exploration.展开更多
地质导向系统是90年代中期开发出来的定向钻井新技术,是对石油钻井工业的一次技术革新。在海洋石油的定向井、延伸井和水平井钻井工程中,该系统有着广泛的应用前景,尤其在地质环境复杂、精度要求较高、工程条件较为恶劣无法进行电测等...地质导向系统是90年代中期开发出来的定向钻井新技术,是对石油钻井工业的一次技术革新。在海洋石油的定向井、延伸井和水平井钻井工程中,该系统有着广泛的应用前景,尤其在地质环境复杂、精度要求较高、工程条件较为恶劣无法进行电测等情况下,更显出其优越性。1997年南海东部陆丰22-1油田开发水平井应用了该系统,收到了良好的效果。在断层发育带和地层岩性不纯等极其复杂的地质环境下,成功地进行“软着陆”并钻成长度超过2000 m 的水平井。文中介绍这一新技术在陆丰22-1油田开发井的应用情况,着重分析其应用结果,研究其在南海东部地区的发展。展开更多
The recent discoveries of pulsed X-ray emission from three ultraluminous X-ray (ULX) sources have finally enabled us to recognize a subclass within the ULX class: the great pretenders, neutron stars (NSs) that ap...The recent discoveries of pulsed X-ray emission from three ultraluminous X-ray (ULX) sources have finally enabled us to recognize a subclass within the ULX class: the great pretenders, neutron stars (NSs) that appear to emit X-ray radiation at isotropic luminosities Lx = 7 × 10^39 erg s-1 _ 1 ×10^41 erg s-i only because their emissions are strongly beamed toward our direction and our sight lines are offset by only a few degrees from their magnetic-dipole axes. The three known pretenders appear to be stronger emitters than the presumed black holes of the ULX class, such as Holmberg II & IX X-1, IC10 X-1 and NGC 300 X-1. For these three NSs, we have adopted a single reasonable assumption, that their brightest observed outbursts unfold at the Eddington rate, and we have calculated both their propeller states and their surface magnetic-field magnitudes. We find that the results are not at all different from those recently obtained for the Magellanic Be/X-ray pulsars: the three NSs reveal modest magnetic fields of about 0.3-0.4TG and beamed propeller-line X-ray luminosities of 1036 - 1037 erg s-1, substantially below the Eddington limit.展开更多
基金supported by National Science and Technology Major Project of China(Grant No.2011ZX05023-004)
文摘The Dongfang 13-1 is located in the diapiric structure belt of the Yinggehai Basin. The formation pressure of its main gas res- ervoir in the Miocene Huangliu Formation is up to 54.6 MPa (pressure coefficient=l.91) and the temperature is as high as 143°C (geothermal gradient 4.36°C/100 m), indicating that it is a typical high-temperature and overpressured gas reservoir. The natural gas is interpreted to be coal-type gas derived from the Miocene mature source rocks containing type Ⅱ2-Ⅲ kero- gens as evidenced by high dryness index of up to 0.98 and heavy carbon isotopes, i.e., the δ13C2 ranging from -30.76%o to -37.52%o and δ13C2 ranging from -25.02%o to -25.62%o. The high temperature and overpressured Miocene petroleum system is related mainly to diapir in the Yinggehai Basin and contains more pore water in the overpressured reservoirs due to under- compaction process. The experimental and calculated results show that the solubility of natural gas in formation water is as high as 10.5 m3/m3 under the temperature and pressure conditions of the Sanya Formation, indicating that at least part of the gas may migrate in the form of water-soluble phase. Meanwhile, the abundant gas source in the Basin makes it possible for the rapid saturation of natural gas in formation water and exsolution of soluble gas. Therefore, the main elements controlling formation of the Dongfang 13-1 gas pool include that (1) the diapir activities and accompanying changes in temperature and pressure accelerate the water-soluble gas exsolution and release a lot of free gas; (2) submarine fan fine sandstone in the Huangliu Formation provides good gas-water segregation and accumulation space; and (3) the overlying overpressured mud rocks act as effective caps. The accumulation mechanism reveals that the high temperatural and high pressure structure belt near the diapir structures has a good potential for large and medium-sized gas field exploration.
文摘地质导向系统是90年代中期开发出来的定向钻井新技术,是对石油钻井工业的一次技术革新。在海洋石油的定向井、延伸井和水平井钻井工程中,该系统有着广泛的应用前景,尤其在地质环境复杂、精度要求较高、工程条件较为恶劣无法进行电测等情况下,更显出其优越性。1997年南海东部陆丰22-1油田开发水平井应用了该系统,收到了良好的效果。在断层发育带和地层岩性不纯等极其复杂的地质环境下,成功地进行“软着陆”并钻成长度超过2000 m 的水平井。文中介绍这一新技术在陆丰22-1油田开发井的应用情况,着重分析其应用结果,研究其在南海东部地区的发展。
基金DMC,SGTL and RC were supported by NASA grant NNX14-AF77GDK was supported by a NASA ADAP grant
文摘The recent discoveries of pulsed X-ray emission from three ultraluminous X-ray (ULX) sources have finally enabled us to recognize a subclass within the ULX class: the great pretenders, neutron stars (NSs) that appear to emit X-ray radiation at isotropic luminosities Lx = 7 × 10^39 erg s-1 _ 1 ×10^41 erg s-i only because their emissions are strongly beamed toward our direction and our sight lines are offset by only a few degrees from their magnetic-dipole axes. The three known pretenders appear to be stronger emitters than the presumed black holes of the ULX class, such as Holmberg II & IX X-1, IC10 X-1 and NGC 300 X-1. For these three NSs, we have adopted a single reasonable assumption, that their brightest observed outbursts unfold at the Eddington rate, and we have calculated both their propeller states and their surface magnetic-field magnitudes. We find that the results are not at all different from those recently obtained for the Magellanic Be/X-ray pulsars: the three NSs reveal modest magnetic fields of about 0.3-0.4TG and beamed propeller-line X-ray luminosities of 1036 - 1037 erg s-1, substantially below the Eddington limit.