This study aims to provide a quantitative basis for the precision emission reduction of land-based total nitrogen(TN)pollutants in Laizhou Bay(LZB),China.The total maximum allocated load(TMAL)of TN pollutants within j...This study aims to provide a quantitative basis for the precision emission reduction of land-based total nitrogen(TN)pollutants in Laizhou Bay(LZB),China.The total maximum allocated load(TMAL)of TN pollutants within jurisdictions around LZB was calculated using the stepwise simulation-optimization model after the division of source units,simulation of the concentration response matrix,setting of the additional constraint conditions for stepwise source units,and calculation of TMAL.The load reduction allocation system for jurisdictions can be constructed on the basis of the TMAL and the load monitored or statistics.The index system for TN emission reduction included indices for two groups:a fixed index of marine emission reduction rate for jurisdictions,which was 11.93%on average;and threshold indices of pollution prevention rate at sources,the increment rate of pollution removal by municipal sewage treatment systems,and watershed retention of jurisdictions,which were 7.43%,1.58%,and 1.09%on average,respectively.Efficiency of pollutant reduction can be evaluated using a 3D hydrodynamic-water quality model.Simulation results showed that the precise reduction indicators achieved the seawater quality improvement target of LZB 5 years earlier than the equal proportion reduction indicators currently used in LZB Basin.展开更多
In this work, the SCSMEX data are used to diagnose and compare the local land-sea thermal conditions, with the focus of discussion on possible influences of thermal forcing of the western Pacific and the Tibetan Plate...In this work, the SCSMEX data are used to diagnose and compare the local land-sea thermal conditions, with the focus of discussion on possible influences of thermal forcing of the western Pacific and the Tibetan Plateau on the onset and development of summer monsoon in 1998. Results show a close relationship between the distribution of the heat sources and the land-sea contrast. Due to the blocking effect of terrain, main maximum zones of the heat sources in areas with more evident north-south land-sea contrast are more obviously southward located than those exclusively with oceans. The surface heating is characterized with apparent seasonal variation and difference between land and sea. The relationship between the western Pacific and the onset of summer monsoon is reflected in the variations of the sea surface temperature (SST) and the latent heat. The influence mechanism of the Tibetan Plateau during the summer monsoon is different: it is dominated by sensible heating during the South China Sea monsoon and by condensed latent heating during the Indian monsoon.展开更多
The important effects of local land-sea thermodynamic contrast between the South China Sea (SCS) and Indochina Peninsula on SCS summer monsoon onset are preliminarily studied by using two sets of SSTA tests and two id...The important effects of local land-sea thermodynamic contrast between the South China Sea (SCS) and Indochina Peninsula on SCS summer monsoon onset are preliminarily studied by using two sets of SSTA tests and two ideal tests in s-p regional climate model. The result shows that warm SST in the SCS in winter and spring is favorable for the formation of monsoon circulation throughout all levels of the atmosphere over the sea, which hastens the onset of SCS summer monsoon. The effects of cold SST are generally the opposite. The local land-sea contrast in the SCS is one of the possible reasons for SCS summer monsoon onset. Superposed upon large-scale land-sea thermodynamic differences, it facilitates the formation of out-breaking onset characteristics of SCS summer monsoon in the SCS area.展开更多
The 2003-006 observations were utilized to analyze the surface characteristics of summer land-sea breezes along the coastland of Guangxi and the Weather Research and Forecast model was applied to simulate the breeze s...The 2003-006 observations were utilized to analyze the surface characteristics of summer land-sea breezes along the coastland of Guangxi and the Weather Research and Forecast model was applied to simulate the breeze structure on August 1-2, 2006. Results show that 1) the intensity and distributions of the breezes reproduced from improved urban underlying surface were close to observations. In the daytime the coastwise urban band was a convergent belt of sea breeze, corresponding to the centers of torrential rains; in the nighttime hours the surface of the Gulf of Tonkin (the Vietnamese name) or the Northern Bay (the Chinese name) acted as a convergent zone of land breezes, likely to produce convective cloud cluster; 2) the experiment on urbanization showed the heat island effect enhancing (weakening) the sea (land) breeze development. Furthermore, the heat island effect mitigated the atmospheric cooling via radiation over the cities in the night, weakening sinking motion correspondingly, thereby suppressing the dominant factor responsible for the steady development of temperature inversion. As a result, the inversion vigor was reduced greatly, but nevertheless no strong effect of the decreased subsidence was found upon the inversion height.展开更多
The effects of the land-sea contrast and the topography on the climatic properties are simulated rn this paper by use of a p- a incorporated coordinate system mode! in a zonal domain.In this paper we firstly discuss t...The effects of the land-sea contrast and the topography on the climatic properties are simulated rn this paper by use of a p- a incorporated coordinate system mode! in a zonal domain.In this paper we firstly discuss the statistical features of the model and find that the capability of the model is stable,with the same land-sea distribution and topography seven monthly mean climate states are close to one another,their variance is even less than the initial one.Secondly,we focally discuss the effects of the land-sea contrast and the topography on the modeled climate fields.It is pointed out that the land-sea contrast and the topography influence the atmosphere mainly through the heating ef-fect and the former has larger influences on the simulated large scale climate fields than the latter.展开更多
The effects of the land-sea distribution, the topography and the diurnal change of the solar radiation on the summer monsoon modelings are studied by use of a coupled modeling system with a 5-layer primitive equation ...The effects of the land-sea distribution, the topography and the diurnal change of the solar radiation on the summer monsoon modelings are studied by use of a coupled modeling system with a 5-layer primitive equation model of the atmosphere and a 2-layer soil or ocean thermodynamic model which are all solved in a zonal model domain between 60°S and 60°N. The results of numerical simulations show that the quasi-stationary patterns of the mean monsoon circulations are mainly affected by the land-sea distribution and the topography, the effect of the diurnal change is the secondary. However, the inclusion of the diurnal change into the model system may improve the intensity of the simulated monsoon circulation, it can influence the distributive pattern of precipitation to a larger extent,without the diurnal change precipitation in the interior of land would decrease and in the coastal regions it would increase.展开更多
Land-sea breeze(LSB)is an atmospheric mesoscale circulation that occurs in the vicinity of the coast and is caused by uneven heating resulting from the difference in specific heat capacity between the sea and land sur...Land-sea breeze(LSB)is an atmospheric mesoscale circulation that occurs in the vicinity of the coast and is caused by uneven heating resulting from the difference in specific heat capacity between the sea and land surfaces.The circulation structure of LSB was quantitatively investigated with a Doppler wind lidar Windcube100s on the west coast of the Yellow Sea for the first time.The time of observation was 31 August to 28 September 2018.It was found that the height of LSB development was 700 m to 1300 m.The duration of conversion of LSB was between 6 h and 8 h.The biggest average horizontal sea-breeze wind speed at 425 m was 5.6 m s^(-1),and at 375 m it was 4.5 m s^(-1).During the conversion process from sea breeze to land breeze,the maximum wind shear exponent was 2.84 at 1300 m altitude.During the conversion process from land breeze to sea breeze,the maximum wind shear exponent was 1.28 at 700 m altitude.The differences in wind shear exponents between sea-breeze and landbreeze systems were between 0.2 and 3.6 at the same altitude.The maximum value of the wind shear exponent can reflect the height of LSB development.展开更多
As demonstrated in the first part of this study(Part I),wind-shift boundaries routinely form along the west coast of the Pearl River Delta due to the land-sea contrast of a“trumpet”shape coastline in the summer mons...As demonstrated in the first part of this study(Part I),wind-shift boundaries routinely form along the west coast of the Pearl River Delta due to the land-sea contrast of a“trumpet”shape coastline in the summer monsoon season.Through multiple numerical simulations,this article(Part II)aims to examine the roles of the trumpet-shaped coastline in the mesovortex genesis during the 1 June 2020 tornadic event.The modeling reproduced two mesovortices that are in close proximity in time and space to the realistic mesovortices.In addition to the modeled mesovortex over the triple point where strong ambient vertical vorticity was located,another mesovortex originated from an enhanced discrete vortex along an airmass boundary via shear instability.On the fine-scale storm morphology,finger-like echoes preceding hook echoes were also reproduced around the triple point.Results from sensitivity experiments suggest that the unique topography plays an essential role in modifying the vorticity budget during the mesovortex formation.While there is a high likelihood of an upcoming storm evolving into a rotating storm over the triple point,the simulation's accuracy is sensitive to the local environmental details and storm dynamics.The strengths of cold pool surges from upstream storms may influence the stretching of low-level vertically oriented vortex and thus the wrap-up of finger-like echoes.These findings suggest that the trumpet-shaped coastline is an important component of mesovortex production during the active monsoon season.It is hoped that this study will increase the situational awareness for forecasters regarding regional non-mesocyclone tornadic environments.展开更多
The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the vari...The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia. The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However, the opposite interdecadal variation was found in the rainfall anomaly in North China and South China. The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean, which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.展开更多
The analysis of 43 years of NCEP-NCAR reanalysis data and station observations reveals the connections between tropospheric temperature variations and the weakening of the Indian summer monsoon circulation. The Indian...The analysis of 43 years of NCEP-NCAR reanalysis data and station observations reveals the connections between tropospheric temperature variations and the weakening of the Indian summer monsoon circulation. The Indian summer monsoon variation is strongly linked to tropospheric temperature over East Asia, showing significant positive correlations of mean tropospheric temperature with all-Indian summer rainfall and the monsoon circulation展开更多
Observations of the South China Sea summer monsoon (SCSSM) demonstrate the different features between the early and late onsets of the monsoon. The determining factor related to the onset and the resultant monsoon r...Observations of the South China Sea summer monsoon (SCSSM) demonstrate the different features between the early and late onsets of the monsoon. The determining factor related to the onset and the resultant monsoon rainfall might be the off-equatorial ITCZ besides the land-sea thermal contrast. The northward-propagating cumulus convection over the northern Indian Ocean could enhance the monsoon trough so that the effect of the horizontal advection of moisture and heat is substantially increased, thus westerlies can eventually penetrate and prevail over the South China Sea (SCS) region.展开更多
In the present study,the coal-rock organic facies of Oligocene Yacheng Formation of the marginal basin in the South China Sea were classified and divided.In addition,through the correlations of the large-scale coal-be...In the present study,the coal-rock organic facies of Oligocene Yacheng Formation of the marginal basin in the South China Sea were classified and divided.In addition,through the correlations of the large-scale coal-bearing basins between the epicontinental sea and the South China Sea,it was concluded that the coal forming activities in the South China Sea presented particularity and complexity.Furthermore,the coal forming mechanisms also presented distinctiveness.The marginal basins in the South China Sea consist of several large and complex rift or depression basins,which are distributed at different tectonic positions in the South China Sea.Therefore,the marginal basins in the South China Sea are not simple traditional units with onshore continental slopes extending toward the deep sea.The marginal basins are known to consist of multi-level structures and distinctive types of basins which differ from the continental regions to the sea.During the Oligocene,the existing luxuriant plants and beneficial conditions assisted in the development of peat.Therefore,the Oligocene was the significant period for the formation and aggregation of the peat.However,the peat did not form in unified sedimentary dynamic fields,but instead displayed multi-level geographical units,multiple provenance areas,instability,and nonevent characteristics.As a result,the marginal basins in the South China Sea are characterized by non-uniform peat aggregation stages.In another words,the majority of the peat had entered the marine system in a dispersive manner and acted as part of the marine deposits,rather than during one or several suitable coal-forming stages.These peat deposits then became the main material source for hydrocarbon generation in all of the marginal basins of the South China Sea.The study will be of much significance for the hydrocarbon exploration in the marginal basins of the South China Sea.展开更多
A 600-year integration performed with the Bergen Climate Model and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data were used to investigate the impa...A 600-year integration performed with the Bergen Climate Model and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data were used to investigate the impact of strong tropical volcanic eruptions on the East Asian summer monsoon (EASM) and EASM rainfall.Both the simulation and NCEP/NCAR reanalysis data show a weakening of the EASM in strong eruption years.The model simulation suggests that North and South China experience droughts and the Yangtze-Huaihe River Valley experiences floods during eruption years.In response to strong tropical volcanic eruptions,the meridional air temperature gradient in the upper troposphere is enhanced,which leads to a southward shift and an increase of the East Asian subtropical westerly jet stream (EASWJ).At the same time,the land-sea thermal contrast between the Asian land mass and Northwest Pacific Ocean is weakened.The southward shift and increase of the EASWJ and reduction of the land-sea thermal contrast all contribute to a weakening of the EASM and EASM rainfall anomaly.展开更多
Investigating the temporal and spatial distributions of the atmospheric heat sources(AHS)over the Tibetan Plateau-Tropical Indian Ocean(TP-TIO)region is of great importance for the understanding of the evolution and d...Investigating the temporal and spatial distributions of the atmospheric heat sources(AHS)over the Tibetan Plateau-Tropical Indian Ocean(TP-TIO)region is of great importance for the understanding of the evolution and development of the South Asian summer monsoon(SASM).This study used the Japanese 55-year Reanalysis(JRA-55)data from 1979 to 2016 and adopted statistical methods to study the characteristics of the AHS between the TP and TIO,and theirs link to the SASM on an interannual scale.The results indicated that the monthly variations of the AHS in the two regions were basically anti-phase,and that the summer AHS in the TP was obviously stronger than that in the TIO.There were strong AHS and atmospheric moisture sink(AMS)centers in both the eastern and western TP in summer.The AHS center in the east was stronger than that in the west,and the AMS centers showed the opposite pattern.In the TIO,a strong AHS center in the northwest-southeast direction was located near 10°S,90°E.Trend analysis showed that summer AHS in the TIO was increasing significantly,especially before 1998,whereas there was a weakening trend in the TP.The difference of the summer AHS between the TP and TIO(hereafter IQ)was used to measure the thermal contrast between the TP and the TIO.The IQ showed an obvious decreasing trend.After 1998,there was a weak thermal contrast between the TP and the TIO,which mainly resulted from the enhanced AHS in the TIO.The land-sea thermal contrast,the TIO Hadley circulation in the southern hemisphere and the SASM circulation all weakened,resulting in abnormal circulation and abnormal precipitation in the Bay of Bengal(BOB).展开更多
Identification of key SST zones is essential in predicting the weather / climate systems in East Asia. With the SST data by the U.K. Meteorological Office and 40-year geopotential height and wind fields by NCAR / NCEP...Identification of key SST zones is essential in predicting the weather / climate systems in East Asia. With the SST data by the U.K. Meteorological Office and 40-year geopotential height and wind fields by NCAR / NCEP, the relationship between the East Asian summer monsoon and north Pacific SSTA is studied, which reveals their interactions are of interdecadal variation. Before mid-1970’s, the north Pacific SSTA acts upon the summer monsoon in East Asia through a great circle wavetrain and results in more rainfall in the summer of the northern part of China. After 1976, the SSTA weakens the wavetrain and no longer influences the precipitation in North China due to loosened links with the East Asian summer monsoon. It can be drawn that the key SST zones having potential effects on the weather / climate systems in East Asia do not stay in one particular area of the ocean but rather shift elsewhere as governed by the interdecadal variations of the air-sea interactions. It is hoped that the study would help shed light on the prediction of drought / flood spans in China.展开更多
Recent studies indicated that except for the land-sea thermal contrast,there also existed the land-land thermal contrast.The composite analysis and t-test method are used to further study the local thermal contrast va...Recent studies indicated that except for the land-sea thermal contrast,there also existed the land-land thermal contrast.The composite analysis and t-test method are used to further study the local thermal contrast variation over the Asian continent,and to discuss the association of seasonal variation of land thermal state with circulation over East Asia,the early summer and summer monsoon activity,and the precipitation anomaly in China in the decadal scale.Results show that the positive meridional temperature anomaly transports downward from upper tropospheric layers in middle-high latitudes north of 25°N in the positive years.In the zonal direction,the Tibetan Plateau heating in the successive spring acts as a force to influence the atmosphere,leading to the rapid temperature warming over eastern Chinese continent,which could increase the land-sea thermal contrast with the negative SSTA.Accordingly,the monsoon activity in early summer over East Asian establishes earlier and the summer monsoon intensity becomes stronger.The early summer precipitation is more-than-normal over the Yangtze River,and the summer precipitation is more-than-normal over the north China and the southwest China.The situation is contrary in the negative years.展开更多
This paper presents results from a statistical validation of the hindcasts of surface wind by a high-reso-ution-mesoscale atmospheric numerical model Advanced Research WRF (ARW3.3), which is set up to force the oper...This paper presents results from a statistical validation of the hindcasts of surface wind by a high-reso-ution-mesoscale atmospheric numerical model Advanced Research WRF (ARW3.3), which is set up to force the operational coastal ocean forecast system at Indian Na- tional Centre for Ocean Information Services (INCOIS). Evaluation is carried out based on comparisons of day-3 forecasts of surface wind with in situ and remote-sensing data. The results show that the model predicts the surface wind fields fairly accurately over the west coast of India, with high skill in predicting the surface wind during the pre-monsoon season. The model predicts the diurnal variability of the surface wind with reasonable accuracy. The model simulates the land-sea breeze cycle in the coastal region realistically, which is very clearly observed during the northeast monsoon and pre-monsoon season and is less prominent during the southwest monsoon season.展开更多
基金the fund provided by the Basic Scientific Research Funds of Dalian University of Technology(No.DUT21RC(3)035)the Open Funds of Key Laboratory of Estuarine and Coastal Environment(No.HKHA2022001)。
文摘This study aims to provide a quantitative basis for the precision emission reduction of land-based total nitrogen(TN)pollutants in Laizhou Bay(LZB),China.The total maximum allocated load(TMAL)of TN pollutants within jurisdictions around LZB was calculated using the stepwise simulation-optimization model after the division of source units,simulation of the concentration response matrix,setting of the additional constraint conditions for stepwise source units,and calculation of TMAL.The load reduction allocation system for jurisdictions can be constructed on the basis of the TMAL and the load monitored or statistics.The index system for TN emission reduction included indices for two groups:a fixed index of marine emission reduction rate for jurisdictions,which was 11.93%on average;and threshold indices of pollution prevention rate at sources,the increment rate of pollution removal by municipal sewage treatment systems,and watershed retention of jurisdictions,which were 7.43%,1.58%,and 1.09%on average,respectively.Efficiency of pollutant reduction can be evaluated using a 3D hydrodynamic-water quality model.Simulation results showed that the precise reduction indicators achieved the seawater quality improvement target of LZB 5 years earlier than the equal proportion reduction indicators currently used in LZB Basin.
基金 Part I: Research on the Formation Mechnism and Prediction Theory of Severe Climate Disasters in China (G199804900) 揂nalysis and Mechanism Study of Regional Climate Changes in China? a key projec
文摘In this work, the SCSMEX data are used to diagnose and compare the local land-sea thermal conditions, with the focus of discussion on possible influences of thermal forcing of the western Pacific and the Tibetan Plateau on the onset and development of summer monsoon in 1998. Results show a close relationship between the distribution of the heat sources and the land-sea contrast. Due to the blocking effect of terrain, main maximum zones of the heat sources in areas with more evident north-south land-sea contrast are more obviously southward located than those exclusively with oceans. The surface heating is characterized with apparent seasonal variation and difference between land and sea. The relationship between the western Pacific and the onset of summer monsoon is reflected in the variations of the sea surface temperature (SST) and the latent heat. The influence mechanism of the Tibetan Plateau during the summer monsoon is different: it is dominated by sensible heating during the South China Sea monsoon and by condensed latent heating during the Indian monsoon.
基金National Natural Science Foundation of China (40175021 40233037)
文摘The important effects of local land-sea thermodynamic contrast between the South China Sea (SCS) and Indochina Peninsula on SCS summer monsoon onset are preliminarily studied by using two sets of SSTA tests and two ideal tests in s-p regional climate model. The result shows that warm SST in the SCS in winter and spring is favorable for the formation of monsoon circulation throughout all levels of the atmosphere over the sea, which hastens the onset of SCS summer monsoon. The effects of cold SST are generally the opposite. The local land-sea contrast in the SCS is one of the possible reasons for SCS summer monsoon onset. Superposed upon large-scale land-sea thermodynamic differences, it facilitates the formation of out-breaking onset characteristics of SCS summer monsoon in the SCS area.
基金Natural Science Foundation of China (40975037 40775033)
文摘The 2003-006 observations were utilized to analyze the surface characteristics of summer land-sea breezes along the coastland of Guangxi and the Weather Research and Forecast model was applied to simulate the breeze structure on August 1-2, 2006. Results show that 1) the intensity and distributions of the breezes reproduced from improved urban underlying surface were close to observations. In the daytime the coastwise urban band was a convergent belt of sea breeze, corresponding to the centers of torrential rains; in the nighttime hours the surface of the Gulf of Tonkin (the Vietnamese name) or the Northern Bay (the Chinese name) acted as a convergent zone of land breezes, likely to produce convective cloud cluster; 2) the experiment on urbanization showed the heat island effect enhancing (weakening) the sea (land) breeze development. Furthermore, the heat island effect mitigated the atmospheric cooling via radiation over the cities in the night, weakening sinking motion correspondingly, thereby suppressing the dominant factor responsible for the steady development of temperature inversion. As a result, the inversion vigor was reduced greatly, but nevertheless no strong effect of the decreased subsidence was found upon the inversion height.
基金Supported by the National Key Project of Fundamental Research "Climate DynamicsClimate Prediction Theory"the National Natural Science Foundation of China
文摘The effects of the land-sea contrast and the topography on the climatic properties are simulated rn this paper by use of a p- a incorporated coordinate system mode! in a zonal domain.In this paper we firstly discuss the statistical features of the model and find that the capability of the model is stable,with the same land-sea distribution and topography seven monthly mean climate states are close to one another,their variance is even less than the initial one.Secondly,we focally discuss the effects of the land-sea contrast and the topography on the modeled climate fields.It is pointed out that the land-sea contrast and the topography influence the atmosphere mainly through the heating ef-fect and the former has larger influences on the simulated large scale climate fields than the latter.
文摘The effects of the land-sea distribution, the topography and the diurnal change of the solar radiation on the summer monsoon modelings are studied by use of a coupled modeling system with a 5-layer primitive equation model of the atmosphere and a 2-layer soil or ocean thermodynamic model which are all solved in a zonal model domain between 60°S and 60°N. The results of numerical simulations show that the quasi-stationary patterns of the mean monsoon circulations are mainly affected by the land-sea distribution and the topography, the effect of the diurnal change is the secondary. However, the inclusion of the diurnal change into the model system may improve the intensity of the simulated monsoon circulation, it can influence the distributive pattern of precipitation to a larger extent,without the diurnal change precipitation in the interior of land would decrease and in the coastal regions it would increase.
基金supported by the National Key Research and Development Program of China[Grant number 2016YFC0202001]the Chinese Academy of Sciences Strategic Priority Research Program[Grant number XDA23020301]the National Natural Science Foundation of China[Grant number 41375036]。
文摘Land-sea breeze(LSB)is an atmospheric mesoscale circulation that occurs in the vicinity of the coast and is caused by uneven heating resulting from the difference in specific heat capacity between the sea and land surfaces.The circulation structure of LSB was quantitatively investigated with a Doppler wind lidar Windcube100s on the west coast of the Yellow Sea for the first time.The time of observation was 31 August to 28 September 2018.It was found that the height of LSB development was 700 m to 1300 m.The duration of conversion of LSB was between 6 h and 8 h.The biggest average horizontal sea-breeze wind speed at 425 m was 5.6 m s^(-1),and at 375 m it was 4.5 m s^(-1).During the conversion process from sea breeze to land breeze,the maximum wind shear exponent was 2.84 at 1300 m altitude.During the conversion process from land breeze to sea breeze,the maximum wind shear exponent was 1.28 at 700 m altitude.The differences in wind shear exponents between sea-breeze and landbreeze systems were between 0.2 and 3.6 at the same altitude.The maximum value of the wind shear exponent can reflect the height of LSB development.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2242203,42275006,and 42030604)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011705)the Science and Technology Research Project for Society of Foshan(2120001008761).
文摘As demonstrated in the first part of this study(Part I),wind-shift boundaries routinely form along the west coast of the Pearl River Delta due to the land-sea contrast of a“trumpet”shape coastline in the summer monsoon season.Through multiple numerical simulations,this article(Part II)aims to examine the roles of the trumpet-shaped coastline in the mesovortex genesis during the 1 June 2020 tornadic event.The modeling reproduced two mesovortices that are in close proximity in time and space to the realistic mesovortices.In addition to the modeled mesovortex over the triple point where strong ambient vertical vorticity was located,another mesovortex originated from an enhanced discrete vortex along an airmass boundary via shear instability.On the fine-scale storm morphology,finger-like echoes preceding hook echoes were also reproduced around the triple point.Results from sensitivity experiments suggest that the unique topography plays an essential role in modifying the vorticity budget during the mesovortex formation.While there is a high likelihood of an upcoming storm evolving into a rotating storm over the triple point,the simulation's accuracy is sensitive to the local environmental details and storm dynamics.The strengths of cold pool surges from upstream storms may influence the stretching of low-level vertically oriented vortex and thus the wrap-up of finger-like echoes.These findings suggest that the trumpet-shaped coastline is an important component of mesovortex production during the active monsoon season.It is hoped that this study will increase the situational awareness for forecasters regarding regional non-mesocyclone tornadic environments.
基金This research was supported by the National Natural Science Foundation of China un-der Grant No.40233033.
文摘The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia. The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However, the opposite interdecadal variation was found in the rainfall anomaly in North China and South China. The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean, which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.40475030 and 40225012)
文摘The analysis of 43 years of NCEP-NCAR reanalysis data and station observations reveals the connections between tropospheric temperature variations and the weakening of the Indian summer monsoon circulation. The Indian summer monsoon variation is strongly linked to tropospheric temperature over East Asia, showing significant positive correlations of mean tropospheric temperature with all-Indian summer rainfall and the monsoon circulation
文摘Observations of the South China Sea summer monsoon (SCSSM) demonstrate the different features between the early and late onsets of the monsoon. The determining factor related to the onset and the resultant monsoon rainfall might be the off-equatorial ITCZ besides the land-sea thermal contrast. The northward-propagating cumulus convection over the northern Indian Ocean could enhance the monsoon trough so that the effect of the horizontal advection of moisture and heat is substantially increased, thus westerlies can eventually penetrate and prevail over the South China Sea (SCS) region.
基金The National Natural Science Foundation of China under contract Nos 41872172 and 41672096the Major National Science and Technology Projects under contract No.2016ZX05026007-004the Science Foundation of Shandong Province under contract No.ZR2019QD008
文摘In the present study,the coal-rock organic facies of Oligocene Yacheng Formation of the marginal basin in the South China Sea were classified and divided.In addition,through the correlations of the large-scale coal-bearing basins between the epicontinental sea and the South China Sea,it was concluded that the coal forming activities in the South China Sea presented particularity and complexity.Furthermore,the coal forming mechanisms also presented distinctiveness.The marginal basins in the South China Sea consist of several large and complex rift or depression basins,which are distributed at different tectonic positions in the South China Sea.Therefore,the marginal basins in the South China Sea are not simple traditional units with onshore continental slopes extending toward the deep sea.The marginal basins are known to consist of multi-level structures and distinctive types of basins which differ from the continental regions to the sea.During the Oligocene,the existing luxuriant plants and beneficial conditions assisted in the development of peat.Therefore,the Oligocene was the significant period for the formation and aggregation of the peat.However,the peat did not form in unified sedimentary dynamic fields,but instead displayed multi-level geographical units,multiple provenance areas,instability,and nonevent characteristics.As a result,the marginal basins in the South China Sea are characterized by non-uniform peat aggregation stages.In another words,the majority of the peat had entered the marine system in a dispersive manner and acted as part of the marine deposits,rather than during one or several suitable coal-forming stages.These peat deposits then became the main material source for hydrocarbon generation in all of the marginal basins of the South China Sea.The study will be of much significance for the hydrocarbon exploration in the marginal basins of the South China Sea.
基金supported by the Strategic Priority Research Program(Grant No.XDA05110203) of the Chinese Academy of Sciencesthe Research Council of Norway through the India-Clim projectthe National Basic Research Program of China(Grant Nos.2012CB955401 and 2010CB951802)
文摘A 600-year integration performed with the Bergen Climate Model and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data were used to investigate the impact of strong tropical volcanic eruptions on the East Asian summer monsoon (EASM) and EASM rainfall.Both the simulation and NCEP/NCAR reanalysis data show a weakening of the EASM in strong eruption years.The model simulation suggests that North and South China experience droughts and the Yangtze-Huaihe River Valley experiences floods during eruption years.In response to strong tropical volcanic eruptions,the meridional air temperature gradient in the upper troposphere is enhanced,which leads to a southward shift and an increase of the East Asian subtropical westerly jet stream (EASWJ).At the same time,the land-sea thermal contrast between the Asian land mass and Northwest Pacific Ocean is weakened.The southward shift and increase of the EASWJ and reduction of the land-sea thermal contrast all contribute to a weakening of the EASM and EASM rainfall anomaly.
基金Strategic Priority Research Program of Chinese Academy of Sciences(XDA20060501)2019 Non-funded Science and Technology Research Project of Zhanjiang(20051817454-6338)2020 Guangdong Ocean University College Student Innovation and Entrepreneurship Project(580520153)
文摘Investigating the temporal and spatial distributions of the atmospheric heat sources(AHS)over the Tibetan Plateau-Tropical Indian Ocean(TP-TIO)region is of great importance for the understanding of the evolution and development of the South Asian summer monsoon(SASM).This study used the Japanese 55-year Reanalysis(JRA-55)data from 1979 to 2016 and adopted statistical methods to study the characteristics of the AHS between the TP and TIO,and theirs link to the SASM on an interannual scale.The results indicated that the monthly variations of the AHS in the two regions were basically anti-phase,and that the summer AHS in the TP was obviously stronger than that in the TIO.There were strong AHS and atmospheric moisture sink(AMS)centers in both the eastern and western TP in summer.The AHS center in the east was stronger than that in the west,and the AMS centers showed the opposite pattern.In the TIO,a strong AHS center in the northwest-southeast direction was located near 10°S,90°E.Trend analysis showed that summer AHS in the TIO was increasing significantly,especially before 1998,whereas there was a weakening trend in the TP.The difference of the summer AHS between the TP and TIO(hereafter IQ)was used to measure the thermal contrast between the TP and the TIO.The IQ showed an obvious decreasing trend.After 1998,there was a weak thermal contrast between the TP and the TIO,which mainly resulted from the enhanced AHS in the TIO.The land-sea thermal contrast,the TIO Hadley circulation in the southern hemisphere and the SASM circulation all weakened,resulting in abnormal circulation and abnormal precipitation in the Bay of Bengal(BOB).
基金National Key Program for Developing Basic Sciences (G1998040900(I)) Natural Natural Science Foundation of China (49975025)
文摘Identification of key SST zones is essential in predicting the weather / climate systems in East Asia. With the SST data by the U.K. Meteorological Office and 40-year geopotential height and wind fields by NCAR / NCEP, the relationship between the East Asian summer monsoon and north Pacific SSTA is studied, which reveals their interactions are of interdecadal variation. Before mid-1970’s, the north Pacific SSTA acts upon the summer monsoon in East Asia through a great circle wavetrain and results in more rainfall in the summer of the northern part of China. After 1976, the SSTA weakens the wavetrain and no longer influences the precipitation in North China due to loosened links with the East Asian summer monsoon. It can be drawn that the key SST zones having potential effects on the weather / climate systems in East Asia do not stay in one particular area of the ocean but rather shift elsewhere as governed by the interdecadal variations of the air-sea interactions. It is hoped that the study would help shed light on the prediction of drought / flood spans in China.
基金Natural Science Fund projects of China(40675045,41065004)NSFC-Yunnan Joint Foundation(U0833602)National Public Benefit Research Foundation of China(GYHY201206017)
文摘Recent studies indicated that except for the land-sea thermal contrast,there also existed the land-land thermal contrast.The composite analysis and t-test method are used to further study the local thermal contrast variation over the Asian continent,and to discuss the association of seasonal variation of land thermal state with circulation over East Asia,the early summer and summer monsoon activity,and the precipitation anomaly in China in the decadal scale.Results show that the positive meridional temperature anomaly transports downward from upper tropospheric layers in middle-high latitudes north of 25°N in the positive years.In the zonal direction,the Tibetan Plateau heating in the successive spring acts as a force to influence the atmosphere,leading to the rapid temperature warming over eastern Chinese continent,which could increase the land-sea thermal contrast with the negative SSTA.Accordingly,the monsoon activity in early summer over East Asian establishes earlier and the summer monsoon intensity becomes stronger.The early summer precipitation is more-than-normal over the Yangtze River,and the summer precipitation is more-than-normal over the north China and the southwest China.The situation is contrary in the negative years.
基金University Grants Commission (UGC) for funding to pursue this work
文摘This paper presents results from a statistical validation of the hindcasts of surface wind by a high-reso-ution-mesoscale atmospheric numerical model Advanced Research WRF (ARW3.3), which is set up to force the operational coastal ocean forecast system at Indian Na- tional Centre for Ocean Information Services (INCOIS). Evaluation is carried out based on comparisons of day-3 forecasts of surface wind with in situ and remote-sensing data. The results show that the model predicts the surface wind fields fairly accurately over the west coast of India, with high skill in predicting the surface wind during the pre-monsoon season. The model predicts the diurnal variability of the surface wind with reasonable accuracy. The model simulates the land-sea breeze cycle in the coastal region realistically, which is very clearly observed during the northeast monsoon and pre-monsoon season and is less prominent during the southwest monsoon season.