We conducted a series of experimental studies on the metallurgical properties of N-lump and F-lump ores used in Baosteel’s blast furnace, including thermal cracking, low-temperature reduction pulverization, reducibil...We conducted a series of experimental studies on the metallurgical properties of N-lump and F-lump ores used in Baosteel’s blast furnace, including thermal cracking, low-temperature reduction pulverization, reducibility, and droplet properties.The results show that the thermal burst properties of N-lump ore are better than those of F-lump ore.The low-temperature reduction degradation index(RDI) pulverization of the charge is the best when the ratios of N-lump ore and F-lump ore account for 35% each.The reduction performance of the charge is improved when F-lump and N-lump ores are mixed with sinter.In the softening-melting performance experiment, when the proportion of N-lump ore is 40%,the characteristic area value(S) as the charge permeability index is the smallest.When F-lump ore is mixed with sinter, its droplet performance improves compared with that of single F-lump ore.The proportion of F-lump ore should not exceed 15%.展开更多
The reduction degradation characteristics of typical sinter, pellet and lump ore were tested with the reducing gas conditions simulating two kinds of irowmaking processes. The results show that, in the same condition ...The reduction degradation characteristics of typical sinter, pellet and lump ore were tested with the reducing gas conditions simulating two kinds of irowmaking processes. The results show that, in the same condition of gas composition and temperature, the reduction degradation degree (RDI〈3.15mm) of sinter is high, RDI〈3.15mm of lump ore is low and RDI〈3.15 mm of pellet is in the middle level. With two kinds of gas composition simulating different iron-making processes, the reduction degradation indices (RDI) of three kinds of iron ores all present the tenden- cy of "inverted V-shape" in the temperature range from 450 to 650℃, and the RDI reach the maximum value at 550℃. The reduction degradation degrees of iron ores are extended when mixing the gas with hydrogen to increase the re duction potential, and the influence extent is discrepant for different iron ores. Colligating the increase amplitude of grains in small size fraction, the influence of reducing gas on lump ore is the greatest, the influence on sinter is the second, and the sensitivity of pellet on the reducing gas properties change is relatively small. As for the degradation form, lump ore and sinter both present the degradation ,of cracking, and the distribution of small grains generated from the cracking is in the range from 03 5 to 6. 3 mm uniformly. The lump ore presents surface cracking, while sin- ter presents integral cracking. The pellet presents the degradation of surface stripping, and the proportion of grains smaller than 0.5 mm is the highest, which is up to 90% in the grains smaller than 3.15 mm.展开更多
The differences of reduction behaviors between iron ore lump and pellets were studied by conducting low temperature reduction degradation, static load reduction and droplet tests. These tests simulated the conditions ...The differences of reduction behaviors between iron ore lump and pellets were studied by conducting low temperature reduction degradation, static load reduction and droplet tests. These tests simulated the conditions of reduction temperature and hydrogen-containing gas in COREX. Due to its dense structure and low porosity compared with pellets, lump ore possesses poor reduction degradation index (RDI) and slower reduction rate in early and medium reaction stages ,showing signs of lower strength, lower softening and melting temperatures, as well as a wider melting zone and higher AP. That provides some basis to explain the phenomena of differential pressure rise,metallization decline and more sticking after the usage of lump ore in COREX plant.展开更多
The scalloped medium-length hole blasting mining method used in Dahongshan Copper Mine accounted for more than 61%of the total amount of mining,but the large boulder yield restricted the intensity of ore supply for mi...The scalloped medium-length hole blasting mining method used in Dahongshan Copper Mine accounted for more than 61%of the total amount of mining,but the large boulder yield restricted the intensity of ore supply for mines,and the average boulder yield was as high as 22.7%.In order to develop the mine production efficiency,the circular medium-length hole blasting technology was proposed and field tests were carried out.The test results showed that circular medium-length hole blasting mining can reduce the average boulder yield to 10.3%.Compared with the traditional scalloped medium-length hole blasting mining,the average boulder yield was decreased by 12.4%.The daily yield of ore for the panel on duty was increased by 152.29 t,and the growth rate was 51.1%.The new technology can reduce the time for the handling of boulder and the consumption of explosives and detonators for recrushing,and increase the efficiency of mining while reduce the mining cost,which has received good blasting effects.展开更多
文摘We conducted a series of experimental studies on the metallurgical properties of N-lump and F-lump ores used in Baosteel’s blast furnace, including thermal cracking, low-temperature reduction pulverization, reducibility, and droplet properties.The results show that the thermal burst properties of N-lump ore are better than those of F-lump ore.The low-temperature reduction degradation index(RDI) pulverization of the charge is the best when the ratios of N-lump ore and F-lump ore account for 35% each.The reduction performance of the charge is improved when F-lump and N-lump ores are mixed with sinter.In the softening-melting performance experiment, when the proportion of N-lump ore is 40%,the characteristic area value(S) as the charge permeability index is the smallest.When F-lump ore is mixed with sinter, its droplet performance improves compared with that of single F-lump ore.The proportion of F-lump ore should not exceed 15%.
文摘The reduction degradation characteristics of typical sinter, pellet and lump ore were tested with the reducing gas conditions simulating two kinds of irowmaking processes. The results show that, in the same condition of gas composition and temperature, the reduction degradation degree (RDI〈3.15mm) of sinter is high, RDI〈3.15mm of lump ore is low and RDI〈3.15 mm of pellet is in the middle level. With two kinds of gas composition simulating different iron-making processes, the reduction degradation indices (RDI) of three kinds of iron ores all present the tenden- cy of "inverted V-shape" in the temperature range from 450 to 650℃, and the RDI reach the maximum value at 550℃. The reduction degradation degrees of iron ores are extended when mixing the gas with hydrogen to increase the re duction potential, and the influence extent is discrepant for different iron ores. Colligating the increase amplitude of grains in small size fraction, the influence of reducing gas on lump ore is the greatest, the influence on sinter is the second, and the sensitivity of pellet on the reducing gas properties change is relatively small. As for the degradation form, lump ore and sinter both present the degradation ,of cracking, and the distribution of small grains generated from the cracking is in the range from 03 5 to 6. 3 mm uniformly. The lump ore presents surface cracking, while sin- ter presents integral cracking. The pellet presents the degradation of surface stripping, and the proportion of grains smaller than 0.5 mm is the highest, which is up to 90% in the grains smaller than 3.15 mm.
基金sponsored by Shanghai Rising-Star Program(B type 11QB1400200)
文摘The differences of reduction behaviors between iron ore lump and pellets were studied by conducting low temperature reduction degradation, static load reduction and droplet tests. These tests simulated the conditions of reduction temperature and hydrogen-containing gas in COREX. Due to its dense structure and low porosity compared with pellets, lump ore possesses poor reduction degradation index (RDI) and slower reduction rate in early and medium reaction stages ,showing signs of lower strength, lower softening and melting temperatures, as well as a wider melting zone and higher AP. That provides some basis to explain the phenomena of differential pressure rise,metallization decline and more sticking after the usage of lump ore in COREX plant.
基金National Natural Science Foundation of China (No. 51304087) Foundation Projects of Yun- nan Province (No. KKSY201404056, No. KKSA201121083)
文摘The scalloped medium-length hole blasting mining method used in Dahongshan Copper Mine accounted for more than 61%of the total amount of mining,but the large boulder yield restricted the intensity of ore supply for mines,and the average boulder yield was as high as 22.7%.In order to develop the mine production efficiency,the circular medium-length hole blasting technology was proposed and field tests were carried out.The test results showed that circular medium-length hole blasting mining can reduce the average boulder yield to 10.3%.Compared with the traditional scalloped medium-length hole blasting mining,the average boulder yield was decreased by 12.4%.The daily yield of ore for the panel on duty was increased by 152.29 t,and the growth rate was 51.1%.The new technology can reduce the time for the handling of boulder and the consumption of explosives and detonators for recrushing,and increase the efficiency of mining while reduce the mining cost,which has received good blasting effects.