The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurfac...The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurface structures within a depth of approximately 50 m.However,it was still difficult to identify finer layers from the cluttered reflections and scattering waves.We applied deconvolution to improve the vertical resolution of the radar profile by extending the limited bandwidth associated with the emissive radar pulse.To overcome the challenges arising from the mixed-phase wavelets and the problematic amplification of noise,we performed predictive deconvolution to remove the minimum-phase components from the Chang’E-4 dataset,followed by a comprehensive phase rotation to rectify phase anomalies in the radar image.Subsequently,we implemented irreversible migration filtering to mitigate the noise and diminutive clutter echoes amplified by deconvolution.The processed data showed evident enhancement of the vertical resolution with a widened bandwidth in the frequency domain and better signal clarity in the time domain,providing us with more undisputed details of subsurface structures near the Chang’E-4 landing site.展开更多
To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore...To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsur- face to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the con- figuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.展开更多
针对传统的空间数据处理软件的缺点,采用空间数据抽象库(Geospatial Data Abstraction Library,GDAL)实现不同来源的月球空间数据共享。根据月球空间数据的特点,采用空间数据交换模式设计和实现了包括桌面、网络和网络处理服务(WPS)3种...针对传统的空间数据处理软件的缺点,采用空间数据抽象库(Geospatial Data Abstraction Library,GDAL)实现不同来源的月球空间数据共享。根据月球空间数据的特点,采用空间数据交换模式设计和实现了包括桌面、网络和网络处理服务(WPS)3种形式的月球空间数据转换服务,有效解决了行星数据系统等月球空间数据的共享问题。该方案在实际应用中取得了良好的效果,下一步,将研究采用并行技术,以提高数据的转换效率。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42325406 and 42304187)the China Postdoctoral Science Foundation(Grant No.2023M733476)+3 种基金the CAS Project for Young Scientists in Basic Research(Grant No.YSBR082)the National Key R&D Program of China(Grant No.2022YFF0503203)the Key Research Program of the Institute of Geology and GeophysicsChinese Academy of Sciences(Grant Nos.IGGCAS-202101 and IGGCAS-202401).
文摘The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurface structures within a depth of approximately 50 m.However,it was still difficult to identify finer layers from the cluttered reflections and scattering waves.We applied deconvolution to improve the vertical resolution of the radar profile by extending the limited bandwidth associated with the emissive radar pulse.To overcome the challenges arising from the mixed-phase wavelets and the problematic amplification of noise,we performed predictive deconvolution to remove the minimum-phase components from the Chang’E-4 dataset,followed by a comprehensive phase rotation to rectify phase anomalies in the radar image.Subsequently,we implemented irreversible migration filtering to mitigate the noise and diminutive clutter echoes amplified by deconvolution.The processed data showed evident enhancement of the vertical resolution with a widened bandwidth in the frequency domain and better signal clarity in the time domain,providing us with more undisputed details of subsurface structures near the Chang’E-4 landing site.
基金Supported by the National Natural Science Foundation of China
文摘To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsur- face to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the con- figuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.
文摘针对传统的空间数据处理软件的缺点,采用空间数据抽象库(Geospatial Data Abstraction Library,GDAL)实现不同来源的月球空间数据共享。根据月球空间数据的特点,采用空间数据交换模式设计和实现了包括桌面、网络和网络处理服务(WPS)3种形式的月球空间数据转换服务,有效解决了行星数据系统等月球空间数据的共享问题。该方案在实际应用中取得了良好的效果,下一步,将研究采用并行技术,以提高数据的转换效率。