期刊文献+
共找到24,125篇文章
< 1 2 250 >
每页显示 20 50 100
Impact of interleukin 6 levels on acute lung injury risk and disease severity in critically ill sepsis patients
1
作者 Ya Liu Li Chen 《World Journal of Clinical Cases》 SCIE 2024年第23期5374-5381,共8页
BACKGROUND Sepsis is a life-threatening condition characterized by a dysregulation of the host response to infection that can lead to acute lung injury(ALI)and multiple organ dysfunction syndrome(MODS).Interleukin 6(I... BACKGROUND Sepsis is a life-threatening condition characterized by a dysregulation of the host response to infection that can lead to acute lung injury(ALI)and multiple organ dysfunction syndrome(MODS).Interleukin 6(IL-6)is a pro-inflammatory cytokine that plays a crucial role in the pathogenesis of sepsis and its complications.AIM To investigate the relationship among plasma IL-6 levels,risk of ALI,and disease severity in critically ill patients with sepsis.METHODS This prospective and observational study was conducted in the intensive care unit of a tertiary care hospital between January 2021 and December 2022.A total of 83 septic patients were enrolled.Plasma IL-6 levels were measured upon admission using an enzyme-linked immunosorbent assay.The development of ALI and MODS was monitored during hospitalization.Disease severity was evaluated by Acute Physiology and Chronic Health Evaluation II(APACHE II)and Sequential Organ Failure Assessment(SOFA)scores.RESULTS Among the 83 patients with sepsis,38(45.8%)developed ALI and 29(34.9%)developed MODS.Plasma IL-6 levels were significantly higher in patients who developed ALI than in those without ALI(median:125.6 pg/mL vs 48.3 pg/mL;P<0.001).Similarly,patients with MODS had higher IL-6 levels than those without MODS(median:142.9 pg/mL vs 58.7 pg/mL;P<0.001).Plasma IL-6 levels were strongly and positively correlated with APACHE II(r=0.72;P<0.001)and SOFA scores(r=0.68;P<0.001).CONCLUSIONElevated plasma IL-6 levels in critically ill patients with sepsis were associated with an increased risk of ALI andMODS.Higher IL-6 levels were correlated with greater disease severity,as reflected by higher APACHE II andSOFA scores.These findings suggest that IL-6 may serve as a biomarker for predicting the development of ALI anddisease severity in patients with sepsis. 展开更多
关键词 SEPSIS acute lung injury Multiple organ dysfunction syndrome INTERLEUKIN-6 BIOMARKER Disease severity
下载PDF
Mogroside IIE,an in vivo metabolite of sweet agent,alleviates acute lung injury via Pla2g2a-EGFR inhibition
2
作者 Weichao Lü Guoqing Ren +2 位作者 Kuniyoshi Shimizu Renshi Li Chaofeng Zhang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期299-312,共14页
In the face of increasingly serious environmental pollution,the health of human lung tissues is also facing serious threats.Mogroside IIE(M2E)is the main metabolite of sweetening agents mogrosides from the anti-tussiv... In the face of increasingly serious environmental pollution,the health of human lung tissues is also facing serious threats.Mogroside IIE(M2E)is the main metabolite of sweetening agents mogrosides from the anti-tussive Chinese herbal Siraitia grosvenori.The study elucidated the anti-inflammatory action and molecular mechanism of M2E against acute lung injury(ALI).A lipopolysaccharide(LPS)-induced ALI model was established in mice and MH-S cells were employed to explore the protective mechanism of M2E through the western blotting,co-immunoprecipitation,and quantitative real time-PCR analysis.The results indicated that M2E alleviated LPS-induced lung injury through restraining the activation of secreted phospholipase A2 type IIA(Pla2g2a)-epidermal growth factor receptor(EGFR).The interaction of Pla2g2a and EGFR was identified by co-immunoprecipitation.In addition,M2E protected ALI induced with LPS against inflammatory and damage which were significantly dependent upon the downregulation of AKT and m TOR via the inhibition of Pla2g2a-EGFR.Pla2g2a may represent a potential target for M2E in the improvement of LPS-induced lung injury,which may represent a promising strategy to treat ALI. 展开更多
关键词 Mogroside IIE acute lung injury Secreted phospholipase A2 type IIA(Pla2g2a) Epidermal growth factor receptor(EGFR)
下载PDF
Periplaneta Americana Extract Ameliorates LPS-induced Acute Lung Injury Via Reducing Inflammation and Oxidative Stress 被引量:1
3
作者 Tien-thanh NGUYEN Ze DENG +6 位作者 Rui-yin GUO Jin-wei CHAI Rui LI Qing-ye ZENG Shi-an LAI Xin CHEN Xue-qing XU 《Current Medical Science》 SCIE CAS 2023年第3期445-455,共11页
Objective Acute lung injury(ALI)is an acute clinical syndrome characterized by uncontrolled inflammation response,which causes high mortality and poor prognosis.The present study determined the protective effect and u... Objective Acute lung injury(ALI)is an acute clinical syndrome characterized by uncontrolled inflammation response,which causes high mortality and poor prognosis.The present study determined the protective effect and underlying mechanism of Periplaneta americana extract(PAE)against lipopolysaccharide(LPS)-induced ALI.Methods The viability of MH-S cells was measured by MTT.ALI was induced in BALB/c mice by intranasal administration of LPS(5 mg/kg),and the pathological changes,oxidative stress,myeloperoxidase activity,lactate dehydrogenase activity,inflammatory cytokine expression,edema formation,and signal pathway activation in lung tissues and bronchoalveolar lavage fluid(BALF)were examined by H&E staining,MDA,SOD and CAT assays,MPO assay,ELISA,wet/dry analysis,immunofluorescence staining and Western blotting,respectively.Results The results revealed that PAE obviously inhibited the release of proinflammatory TNF-α,IL-6 and IL-1βby suppressing the activation of MAPK/Akt/NF-κB signaling pathways in LPS-treated MH-S cells.Furthermore,PAE suppressed the neutrophil infiltration,permeability increase,pathological changes,cellular damage and death,pro-inflammatory cytokines expression,and oxidative stress upregulation,which was associated with its blockage of the MAPK/Akt/NF-κB pathway in lung tissues of ALI mice.Conclusion PAE may serve as a potential agent for ALI treatment due to its anti-inflammatory and anti-oxidative properties,which correlate to the blockage of the MAPK/NF-κB and AKT signaling pathways. 展开更多
关键词 Periplaneta americana acute lung injury ANTI-INFLAMMATION ANTIOXIDANT
下载PDF
Glycolysis and acute lung injury:A review
4
作者 Yang Yi Jun Chen +3 位作者 Nan Li Yue Huang Jichao Peng Xiaoran Liu 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2023年第11期490-497,共8页
Acute lung injury is featured as diffuse pulmonary edema and persistent hypoxemia caused by lung or systemic injury.It is believed that these pathological changes are associated with damage to the alveolar epithelium ... Acute lung injury is featured as diffuse pulmonary edema and persistent hypoxemia caused by lung or systemic injury.It is believed that these pathological changes are associated with damage to the alveolar epithelium and vascular endothelium,recruitment of inflammatory cells,and inflammatory factor storms.In recent years,the metabolic reprogramming of lung parenchymal cells and immune cells,particularly alterations in glycolysis,has been found to occur in acute lung injury.Inhibition of glycolysis can reduce the severity of acute lung injury.Thus,this review focuses on the interconnection between acute lung injury and glycolysis and the mechanisms of interaction,which may bring hope for the treatment of acute lung injury. 展开更多
关键词 acute lung injury GLYCOLYSIS Hypoxia-inducible factor 1 ENDOTHELIUM MACROPHAGES
下载PDF
Extracellular vesicles in the pathogenesis and treatment of acute lung injury
5
作者 Qian Hu Shu Zhang +5 位作者 Yue Yang Jia‑Qi Yao Wen‑Fu Tang Christopher J.Lyon Tony Ye Hu Mei‑Hua Wan 《Military Medical Research》 SCIE CAS CSCD 2023年第4期478-498,共21页
Acute lung injury(ALI)and acute respiratory distress syndrome(ARDS)are common life-threatening lung diseases associated with acute and severe inflammation.Both have high mortality rates,and despite decades of research... Acute lung injury(ALI)and acute respiratory distress syndrome(ARDS)are common life-threatening lung diseases associated with acute and severe inflammation.Both have high mortality rates,and despite decades of research on clinical ALI/ARDS,there are no effective therapeutic strategies.Disruption of alveolar-capillary barrier integrity or activation of inflammatory responses leads to lung inflammation and injury.Recently,studies on the role of extracellular vesicles(EVs)in regulating normal and pathophysiologic cell activities,including inflammation and injury responses,have attracted attention.Injured and dysfunctional cells often secrete EVs into serum or bronchoalveolar lavage fluid with altered cargoes,which can be used to diagnose and predict the development of ALI/ARDS.EVs secreted by mesenchymal stem cells can also attenuate inflammatory reactions associated with cell dysfunction and injury to preserve or restore cell function,and thereby promote cell proliferation and tissue regeneration.This review focuses on the roles of EVs in the pathogenesis of pulmonary inflammation,particularly ALI/ARDS. 展开更多
关键词 acute lung injury(ALI) acute respiratory distress syndrome(ARDS) Extracellular vesicles(EVs) Pulmonary inflammation Mesenchymal stem cells(MSCs)
下载PDF
Study of the anti-inflammatory effect of the Traditional Mongolian Medicine Hohgardi-9 in acute lung injury
6
作者 Aodeng Qimuge Tegexi Baiyin +9 位作者 Bilige Bilige Temuqile Temuqile Sha-Na Chen Ying-Chun Bai Wuhan Qimuge Siqin Siqin Hugejile Hang Chang-Shan Wang Huricha Baigued De-Zhi Yang 《Traditional Medicine Research》 2023年第11期23-33,共11页
Background:Hohgardi-9 is a well-known traditional Mongolian drug that relieves cough and removes phlegm.Although it is widely used to treat lung diseases clinically,Hohgardi-9’s bioactive constituents and mechanism o... Background:Hohgardi-9 is a well-known traditional Mongolian drug that relieves cough and removes phlegm.Although it is widely used to treat lung diseases clinically,Hohgardi-9’s bioactive constituents and mechanism of action are unknown.In this study,we explored the bioactive compounds in Hohgardi-9 and the mechanism underlying its therapeutic effect against acute lung injury(ALI).Methods:We obtained the main components of Hohgardi-9 and analyzed the targets related to ALI by searching the traditional Chinese medicine systems pharmacology database and existing literature.Then,we constructed the compound-target network using Cytoscape 3.8.0 software to obtain the bioactive compounds in Hohgardi-9 against ALI.We used a string database to investigate the interaction between the possible protein targets of Hohgardi-9.We also performed Gene Ontology function annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis to predict its anti-ALI mechanism.Further,to verify the therapeutical effects of Hohgardi-9,we used an ALI rat model and analyzed the components of Hohgardi-9 found in the rat plasma using ultra-high-performance liquid chromatography coupled with Q-Exactive mass spectrometry.Results:The network pharmacology and plasma component analysis showed that Hohgardi-9 contained 31 potentially bioactive components,including quercetin,herbacetin,izoteolin,and columbinetin acetate,which affected the NF-κB,TLR,and TNF signaling pathways via key targets,such as RELA(p65)and TLR4.The in vivo experiments using hematoxylin and eosin staining revealed that Hohgardi-9 significantly improved lung tissue injury and pulmonary edema in ALI rats.Simultaneously,Hohgardi-9 significantly reduced the expression levels of genes encoding inflammatory factors,such as TRL4,TNF-α,IL-1β,and ICAM1,in the lungs of ALI rats.Conclusion:Hohgardi-9 alleviated ALI by inhibiting inflammation-related gene expression through its active ingredients,such as quercetin and herbacetin. 展开更多
关键词 Hhohgardi-9 acute lung injury active components ANTI-INFLAMMATION
下载PDF
Network pharmacology and molecular docking to explore Polygoni Cuspidati Rhizoma et Radix treatment for acute lung injury
7
作者 Jia-Lin Zheng Xiao Wang +7 位作者 Zhe Song Peng Zhou Gui-Ju Zhang Juan-Juan Diao Cheng-En Han Guang-Yuan Jia Xu Zhou Bao-Qing Zhang 《World Journal of Clinical Cases》 SCIE 2023年第19期4579-4600,共22页
BACKGROUND Polygoni Cuspidati Rhizoma et Radix(PCRR),a well-known traditional Chinese medicine(TCM),inhibits inflammation associated with various human diseases.However,the anti-inflammatory effects of PCRR in acute l... BACKGROUND Polygoni Cuspidati Rhizoma et Radix(PCRR),a well-known traditional Chinese medicine(TCM),inhibits inflammation associated with various human diseases.However,the anti-inflammatory effects of PCRR in acute lung injury(ALI)and the underlying mechanisms of action remain unclear.AIM To determine the ingredients related to PCRR for treatment of ALI using multiple databases to obtain potential targets for fishing.METHODS Recognized and candidate active compounds for PCRR were obtained from Traditional Chinese Medicine Systems Pharmacology,STITCH,and PubMed databases.Target ALI databases were built using the Therapeutic Target,DrugBank,DisGeNET,Online Mendelian Inheritance in Man,and Genetic Association databases.Network pharmacology includes network construction,target prediction,topological feature analysis,and enrichment analysis.Bioinformatics resources from the Database for Annotation,Visualization and Integrated Discovery were utilized for gene ontology biological process and Kyoto Encyclopedia of Genes and Genomes network pathway enrichment analysis,and molecular docking techniques were adopted to verify the combination of major active ingredients and core targets.RESULTS Thirteen bioactive compounds corresponding to the 433 PCRR targets were identified.In addition,128 genes were closely associated with ALI,60 of which overlapped with PCRR targets and were considered therapeutically relevant.Functional enrichment analysis suggested that PCRR exerted its pharmacological effects in ALI by modulating multiple pathways,including the cell cycle,cell apoptosis,drug metabolism,inflammation,and immune modulation.Molecular docking results revealed a strong associative relationship between the active ingredient and core target.CONCLUSION PCRR alleviates ALI symptoms via molecular mechanisms predicted by network pharmacology.This study proposes a strategy to elucidate the mechanisms of TCM at the network pharmacology level. 展开更多
关键词 Traditional Chinese medicine acute lung injury INFECTIONS DATABASE Network pharmacology Molecular docking
下载PDF
Multiomics reveal human umbilical cord mesenchymal stem cells improving acute lung injury via the lung-gut axis
8
作者 Lu Lv En-Hai Cui +5 位作者 Bin Wang Li-Qin Li Feng Hua Hua-Dong Lu Na Chen Wen-Yan Chen 《World Journal of Stem Cells》 SCIE 2023年第9期908-930,共23页
BACKGROUND Acute lung injury(ALI)and its final severe stage,acute respiratory distress syndrome,are associated with high morbidity and mortality rates in patients due to the lack of effective specific treatments.Gut m... BACKGROUND Acute lung injury(ALI)and its final severe stage,acute respiratory distress syndrome,are associated with high morbidity and mortality rates in patients due to the lack of effective specific treatments.Gut microbiota homeostasis,including that in ALI,is important for human health.Evidence suggests that the gut microbiota improves lung injury through the lung-gut axis.Human umbilical cord mesenchymal cells(HUC-MSCs)have attractive prospects for ALI treatment.This study hypothesized that HUC-MSCs improve ALI via the lung-gut microflora.AIM To explore the effects of HUC-MSCs on lipopolysaccharide(LPS)-induced ALI in mice and the involvement of the lung-gut axis in this process.METHODS C57BL/6 mice were randomly divided into four groups(18 rats per group):Sham,sham+HUC-MSCs,LPS,and LPS+HUC-MSCs.ALI was induced in mice by intraperitoneal injections of LPS(10 mg/kg).After 6 h,mice were intervened with 0.5 mL phosphate buffered saline(PBS)containing 1×10^(6) HUC-MSCs by intraperitoneal injections.For the negative control,100 mL 0.9%NaCl and 0.5 mL PBS were used.Bronchoalveolar lavage fluid(BALF)was obtained from anesthetized mice,and their blood,lungs,ileum,and feces were obtained by an aseptic technique following CO_(2) euthanasia.Wright’s staining,enzyme-linked immunosorbent assay,hematoxylin-eosin staining,Evans blue dye leakage assay,immunohistochemistry,fluorescence in situ hybridization,western blot,16S rDNA sequencing,and non-targeted metabolomics were used to observe the effect of HUC-MSCs on ALI mice,and the involvement of the lung-gut axis in this process was explored.One-way analysis of variance with post-hoc Tukey’s test,independent-sample Student’s t-test,Wilcoxon rank-sum test,and Pearson correlation analysis were used for statistical analyses.RESULTS HUC-MSCs were observed to improve pulmonary edema and lung and ileal injury,and decrease mononuclear cell and neutrophil counts,protein concentrations in BALF and inflammatory cytokine levels in the serum,lung,and ileum of ALI mice.Especially,HUC-MSCs decreased Evans blue concentration and Toll-like receptor 4,myeloid differentiation factor 88,p-nuclear factor kappa-B(NF-κB)/NF-κB,and p-inhibitorαof NF-κB(p-IκBα)/IκBαexpression levels in the lung,and raised the pulmonary vascular endothelial-cadherin,zonula occludens-1(ZO-1),and occludin levels and ileal ZO-1,claudin-1,and occludin expression levels.HUC-MSCs improved gut and BALF microbial homeostases.The number of pathogenic bacteria decreased in the BALF of ALI mice treated with HUCMSCs.Concurrently,the abundances of Oscillospira and Coprococcus in the feces of HUS-MSC-treated ALI mice were significantly increased.In addition,Lactobacillus,Bacteroides,and unidentified_Rikenellaceae genera appeared in both feces and BALF.Moreover,this study performed metabolomic analysis on the lung tissue and identified five upregulated metabolites and 11 downregulated metabolites in the LPS+MSC group compared to the LPS group,which were related to the purine metabolism and the taste transduction signaling pathways.Therefore,an intrinsic link between lung metabolite levels and BALF flora homeostasis was established.CONCLUSION This study suggests that HUM-MSCs attenuate ALI by redefining the gut and lung microbiota. 展开更多
关键词 acute lung injury Human umbilical cord mesenchymal cells LIPOPOLYSACCHARIDE MICROFLORA Untargeted metabolomics Toll-like receptor 4/nuclear factor kappa-B signaling pathway
下载PDF
Lung ultrasound for the early diagnosis of acute lung injury:A case report
9
作者 Xin Zheng Na Liu 《World Journal of Clinical Cases》 SCIE 2023年第32期7900-7904,共5页
BACKGROUND The extensive availability of ultrasound(US)technology has increased its use for point-of-care applications in many health care settings.During anaesthesia and surgery,acute respiratory failure or pulmonary... BACKGROUND The extensive availability of ultrasound(US)technology has increased its use for point-of-care applications in many health care settings.During anaesthesia and surgery,acute respiratory failure or pulmonary oedema are common lifethreatening events that,if not recognized and treated appropriately,result in a high mortality rate.CASE SUMMARY We report a patient under anaesthesia whose lung US examination showed multiple vertical artefacts(B-lines)in the lung tissue,indicating pulmonary oedema.The respiratory state improved with the resolution of the pulmonary oedema after our treatment.CONCLUSION We believe that US of the lungs may be a useful tool for dynamic respiratory monitoring at the bedside during anaesthesia. 展开更多
关键词 lung ultrasound acute respiratory failure ULTRASOUND lung Case report
下载PDF
Circulating miRNAs as biomarkers for severe acute pancreatitis associated with acute lung injury 被引量:22
10
作者 Xiao-Guang Lu Xin Kang +3 位作者 Li-Bin Zhan Li-Min Kang Zhi-Wei Fan Li-Zhi Bai 《World Journal of Gastroenterology》 SCIE CAS 2017年第41期7440-7449,共10页
AIM To identify circulating micro(mi)RNAs as biological markers for prediction of severe acute pancreatitis(SAP) with acute lung injury(ALI).METHODS Twenty-four serum samples were respectively collected and classified... AIM To identify circulating micro(mi)RNAs as biological markers for prediction of severe acute pancreatitis(SAP) with acute lung injury(ALI).METHODS Twenty-four serum samples were respectively collected and classified as SAP associated with ALI and SAP without ALI, and the mi RNA expression profiles were determined by microarray analysis. These mi RNAs were validated by quantitative reverse transcriptionpolymerase chain reaction, and their putative targets were predicted by the online software Target Scan, mi Randa and Pic Tar database. Gene ontology(GO) and Kyoto encyclopedia of genes and genomes(commonly known as KEGG) were used to predict their possible functions and pathways involved.RESULTS We investigated 287 mi RNAs based on microarray data analysis. Twelve mi RNAs were differentially expressed in the patients with SAP with ALI and those with SAP without ALI. Hsa-mi R-1260 b, 762, 22-3 p, 23 b and 23 a were differently up-regulated and hsa-mi R-550 a*, 324-5 p, 484, 331-3 p, 140-3 p, 342-3 p and 150 were differently down-regulated in patients with SAP with ALI compared to those with SAP without ALI. In addition, 85 putative target genes of the significantly dysregulated mi RNAs were found by Target Scan, mi Randa and Pic Tar. Finally, GO and pathway network analysis showed that they were mainly enriched in signal transduction, metabolic processes, cytoplasm and cell membranes.CONCLUSION This is the first study to identify 12 circulating mi RNAs in patients with SAP with ALI, which may be biomarkers for prediction of ALI after SAP. 展开更多
关键词 MIRNAS Severe acute pancreatitis acute lung injury BIOMARKER Microarray analysis
下载PDF
Pathogenesis of acute lung injury in rats with severe acute pancreatitis 被引量:18
11
作者 Xue-Min Liu, Jun Xu and Zi-Fa Wang Department of Hepatobiliary Surgery, First Hospital, Xi’an Jiaotong University, Xi’an 710061 , China 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2005年第4期614-617,共4页
BACKGROUND: Acute lung injury (ALI) is the most common and severe complication of severe acute pancreatitis (SAP). The elucidation of the mechanism of ALI contributes to the diagnosis and treatment of the illness. In ... BACKGROUND: Acute lung injury (ALI) is the most common and severe complication of severe acute pancreatitis (SAP). The elucidation of the mechanism of ALI contributes to the diagnosis and treatment of the illness. In this study, we studied the pathogenesis of ALI in rats with severe acute pancreatitis. METHODS: The rats were sacrificed at 1, 3, 5, 6, 9 and 12 hours after the establishment of the model of SAP. Pancreas and lung tissues were obtained for pathological study, and examination of microvascular permeability and myeloperoxidase (MPO) examination. The gene expressions of tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) in the pancreas and lung tissues were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: After the establishment of the SAP model, the degree of pancreatic and lung injury increased gradually along with the gradual increase of MPO activity and micro-vascular permeability. Gene expressions of TNF-α and ICAM-1 in the pancreas rose at 1 hour and peaked at 7 hours. In contrast, their gene expression in the lungs rose slightly at 1 hour and peaked at 9-12 hours. CONCLUSION: An obvious time window existed between SAP and lung injury, which is beneficial to the early prevention of the development of ALI. 展开更多
关键词 PATHOGENESIS severe acute pancreatitis acute lung injury
下载PDF
Expression of phosphatidylinositol-3 kinase and effects of inhibitor Wortmannin on expression of tumor necrosis factor-α in severe acute pancreatitis associated with acute lung injury 被引量:19
12
作者 Ming Wei Yan-jie Gong +3 位作者 Ling Tu Jia Li Ying-hong Liang Yi-hua Zhang 《World Journal of Emergency Medicine》 CAS 2015年第4期299-304,共6页
BACKGROUND: Acute lung injury(ALI) is a common and serious complication of severe acute pancreatitis(SAP). The study aimed to investigate the protective effect and mechanism of phosphatidylinositol-3 kinase(PI3K) inhi... BACKGROUND: Acute lung injury(ALI) is a common and serious complication of severe acute pancreatitis(SAP). The study aimed to investigate the protective effect and mechanism of phosphatidylinositol-3 kinase(PI3K) inhibitor Wortmannin in SAP associated with ALI.METHODS: Ninety rats were randomly divided into three groups: sham operation(SO) group(n=30), SAP group(n=30), and SAP+Wortmannin(SAP+W) group(n=30). SAP model was induced by retrograde injection of 4% sodium taurocholate into the biliopancreatic duct of rats. The rate of lung water content, myeloperoxidase(MPO), matrix metalloproteinase 9(MMP-9), protein kinase B(PKB), abdphosphorylation of protein kinase B(P-PKB) activity in the lung tissue were evaluated.RESULTS: In the SAP group, the p-PKB expression in the lung tissue began to rise at 3 hours after modeling, and peaked at 12 hours(P<0.05); the rate of lung water content, MPO and TNF-α activity were also gradually increased, and the degree of lung lesion gradually increased(P<0.05). In the SAP+Wortmannin group, the p-PKB expression in the lung tissue began to rise at 3 hours after modeling, and peaked at 12 hours; it was higher than that in the SO group(P<0.05), but significantly lower than that in the SAP group(P<0.05). The rest indicators in the SAP+Wortmannin group were also significantly decreased as compared with the SAP group(P<0.05).CONCLUSIONS: The expression of phosphatidylinositol-3 kinase/protein kinase B was elevated in severe pancreatitis rats with lung injury. This suggested that PI3 K signal transduction pathway is involved in the control and release of proinfl ammatory cytokines TNF-α, which may play an important role in the pathogenesis of severe acute pancreatitis associated with lung injury. This finding indicated that Wortmannin can block the PI3 K signal transduction pathway, and inhibit the release of infl ammatory factor TNF-α. 展开更多
关键词 WORTMANNIN Phosphatidylinositol-3 kinase/protein kinase B Severe acute pancreatitis acute lung injury
下载PDF
Calycosin attenuates severe acute pancreatitis-associated acute lung injury by curtailing high mobility group box 1-induced inflammation 被引量:5
13
作者 Chang-Ju Zhu Wan-Guang Yang +8 位作者 De-Jian Li Yao-Dong Song San-Yang Chen Qiao-Fang Wang Yan-Na Liu Yan Zhang Bo Cheng Zhong-Wei Wu Zong-Chao Cui 《World Journal of Gastroenterology》 SCIE CAS 2021年第44期7669-7686,共18页
BACKGROUND Acute lung injury(ALI)is a common and life-threatening complication of severe acute pancreatitis(SAP).There are currently limited effective treatment options for SAP and associated ALI.Calycosin(Cal),a bioa... BACKGROUND Acute lung injury(ALI)is a common and life-threatening complication of severe acute pancreatitis(SAP).There are currently limited effective treatment options for SAP and associated ALI.Calycosin(Cal),a bioactive constituent extracted from the medicinal herb Radix Astragali exhibits potent anti-inflammatory properties,but its effect on SAP and associated ALI has yet to be determined.AIM To identify the roles of Cal in SAP-ALI and the underlying mechanism.METHODS SAP was induced via two intraperitoneal injections of L-arg(4 g/kg)and Cal(25 or 50 mg/kg)were injected 1 h prior to the first L-arg challenge.Mice were sacrificed 72 h after the induction of SAP and associated ALI was examined histologically and biochemically.An in vitro model of lipopolysaccharide(LPS)-induced ALI was established using A549 cells.Immunofluorescence analysis and western blot were evaluated in cells.Molecular docking analyses were conducted to examine the interaction of Cal with HMGB1.RESULTS Cal treatment substantially reduced the serum amylase levels and alleviated histopathological injury associated with SAP and ALI.Neutrophil infiltration and lung tissue levels of neutrophil mediator myeloperoxidase were reduced in line with protective effects of Cal against ALI in SAP.Cal treatment also attenuated the serum levels and mRNA expression of pro-inflammatory cytokines tumor necrosis factor-α,interleukin-6,IL-1β,HMGB1 and chemokine(CXC motif)ligand 1 in lung tissue.Immunofluorescence and western blot analyses showed that Cal treatment markedly suppressed the expression of HMGB1 and phosphorylated nuclear factor-kappa B(NF-κB)p65 in lung tissues and an in vitro model of LPSinduced ALI in A549 cells suggesting a role for HGMB1 in the pathogenesis of ALI.Furthermore,molecular docking analysis provided evidence for the direct interaction of Cal with HGMB1.CONCLUSION Cal protects mice against L-arg-induced SAP and associated ALI by attenuating local and systemic neutrophil infiltration and inflammatory response via inhibition of HGMB1 and the NF-κB signaling pathway. 展开更多
关键词 Severe acute pancreatitis acute lung injury CALYCOSIN Mouse model Highmobility group box 1 Nuclear factor-kappa B
下载PDF
The Mechanism of Acute Lung Injury Induced by Nickel Carbonyl in Rats 被引量:5
14
作者 BAI Ya Na MA Li +5 位作者 WANG Qiu Ying PU Hong Quan ZHANG Xiao Pei WU Xi Jiang XUAN Xiao Qiang CHENG Ning 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2013年第7期625-628,共4页
Nickel carbonyl is a highly toxic metal compound produced from the reaction that occurs between nickel and carbon monoxide under pressure. As previously reported, nickel carbonyl can cause acute aspiration pneumonia, ... Nickel carbonyl is a highly toxic metal compound produced from the reaction that occurs between nickel and carbon monoxide under pressure. As previously reported, nickel carbonyl can cause acute aspiration pneumonia, and animal experiments showed it was toxic to animal lung, liver, brain, and other vital organs[1]. However, few studies have investigated nickel carbonyl poisoning in humans. 展开更多
关键词 The Mechanism of acute lung injury Induced by Nickel Carbonyl in Rats
下载PDF
Effect of Salvia Miltiorrhiza on Expression of the MMP-2 9 in Tissue of Early Stage Acute Lung Injury in Rats with Severe Acute Pancreatitis
15
作者 XU Guang-da LAI Shao-tong +1 位作者 DENG Zao-bin JIANG Jun-ming 《中华中医药学刊》 CAS 2007年第2期264-266,共3页
Objective:To investigate the effect of salvia miltiorrhiza on expression of the MMP-2、9 and TIMP-1、TIMP-2 in tissue of acute lung injury of severe acute pancreatitis(SAP).Methods:MMP-2、9 expression and changes of t... Objective:To investigate the effect of salvia miltiorrhiza on expression of the MMP-2、9 and TIMP-1、TIMP-2 in tissue of acute lung injury of severe acute pancreatitis(SAP).Methods:MMP-2、9 expression and changes of the lung were measured after the SAP rats were induced by retrograde injection of 5%sodium tauocholate into hepatopancreatic duct.The changes of those parameters were also measured after salvia miltiorrhiza was injected intramuscularly just after induction of SAP.Results:The level of MMP-2、9 in pancreas and lung in SAP group were significantly higher than those in sham;The level of MMP-2、9 in salvia miltiorrhiza group were significantly lower than those in SAP group. Conclusion:MMP-2、9 were overexpressed in Acute lung injury (ALI) induced by SAP, salvia miltiorrhiza downregulates MMP-2、9 expression and decreased injury of lung tissue. 展开更多
关键词 severe acute pancreatitis Salvia miltiorrhiza acute lung injury MMP-2、9 expression
下载PDF
Acute lung injury and ARDS in acute pancreatitis: Mechanisms and potential intervention 被引量:66
16
作者 Roland Andersson 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第17期2094-2099,共6页
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in acute pancreatitis still represents a substantial problem,with a mortality rate in the range of 30%-40%.The present review evaluates underlying... Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in acute pancreatitis still represents a substantial problem,with a mortality rate in the range of 30%-40%.The present review evaluates underlying pathophysiological mechanisms in both ALI and ARDS and potential clinical implications.Several mediators and pathophysiological pathways are involved during the different phases of ALI and ARDS.The initial exudative phase is characterized by diffuse alveolar damage,microvascular injury and influx of inflammatory cells.This phase is followed by a fibro-proliferative phase with lung repair,type Ⅱ pneumocyte hypoplasia and proliferation of fibroblasts.Proteases derived from polymorphonuclear neutrophils,various pro-inflammatory mediators,and phospholipases are all involved,among others.Contributing factors that promote pancreatitis-associated ALI may be found in the gut and mesenteric lymphatics.There is a lack of complete understanding of the underlying mechanisms,and by improving our knowledge,novel tools for prevention and intervention may be developed,thus contributing to improved outcome. 展开更多
关键词 acute lung injury acute respiratory distress syndrome acute pancreatitis ETIOLOGY PATHOPHYSIOLOGY
下载PDF
Dexmedetomidine Alleviates Pulmonary Edema by Upregulating AQP1 and AQP5 Expression in Rats with Acute Lung Injury Induced by Lipopolysaccharide 被引量:30
17
作者 姜远旭 戴中亮 +3 位作者 张雪萍 赵伟 黄强 高利昆 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2015年第5期684-688,共5页
This study aims to elucidate the mechanisms by which dexmedetomidine alleviates pulmonary edema in rats with acute lung injury induced by lipopolysaccharide (LPS). Male Wistar rats were randomly divided into five gr... This study aims to elucidate the mechanisms by which dexmedetomidine alleviates pulmonary edema in rats with acute lung injury induced by lipopolysaccharide (LPS). Male Wistar rats were randomly divided into five groups: normal saline control (NS) group, receiving intravenous 0.9% normal saline (5 mL/kg); LPS group, receiving intravenous LPS (10 mg/kg); small-dose dexmedetomidine (S) group, treated with a small dose of dexmedetomidine (0.5 μg·kg^-1·h^-1); medium-dose dexmedetomidine (M) group, treated with a medium dose of dexmedetomidine (2.5 μg·kg^-1·h^-1); high-dose dexmedetomidine (H) group, treated with a high dose of dexmedetomidine (5μg·kg^-1·h^-1). The rats were sacrificed 6 h after intravenous injection of LPS or NS, and the hmgs were removed for evaluating histological characteristics and determining the lung wet/dry weight ratio (W/D). The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) in the lung tissues were assessed by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein expression levels of aquaporin-1 (AQP1) and aquaporin-5 (AQP5) were detected by RT-PCR, immunohistochemistry, and Western blot- ting. The lung tissues from the LPS groups were significantly damaged, which were less pronounced in the H group but not in the small-dose dexmedetomidine group or medium-dose dexmedetomidine group. The W/D and the concentrations of TNF-α and IL-1β in the pulmonary tissues were increased in the LPS group as compared with those in NS group, which were reduced in the H group but not in S group or M group (P〈0.01). The expression of AQP1 and AQP5 was lower in the LPS group than in the NS group, and significantly increased in the H group but not in the S group or M group (P〈0.01). Our findings suggest that dexmedetomidine may alleviate pulmonary edema by increasing the expression of AQP-1 and AQP-5. 展开更多
关键词 DEXMEDETOMIDINE acute lung injury lung edema AQUAPORIN-1 AQUAPORIN-5
下载PDF
Treatment of acute lung injury in mice using Bai-Ri-Ke syrup
18
作者 Yue-Jie Yang Cui Zhang +3 位作者 Meng-Meng Cui Yan-Mei Zong Li Wang Ying Li 《TMR Pharmacology Research》 2022年第1期13-16,共4页
Objective:This study aimed to examine the therapeutic effects of Bai-Ri-Ke syrup(BRK)on mice with acute lung injury(ALI).Methods:Fifty male C57BL/6 mice were equally divided into the control group,model group,dexameth... Objective:This study aimed to examine the therapeutic effects of Bai-Ri-Ke syrup(BRK)on mice with acute lung injury(ALI).Methods:Fifty male C57BL/6 mice were equally divided into the control group,model group,dexamethasone(DXM)group,Bai-Ri-Ke syrup(BRK)low-group,and BRK-high group,with six mice per group.An intratracheal injection of 5 mg/kg POLY(I:C)was used to construct an ALI mouse model.After a successful model construction,the mice in the DXM group were given[0.2 mg/10 g·d]dexamethasone sodium phosphate injection(1 mL:2 mg)on the following day via intraperitoneal injection.The mice in the BRK-low group were given 0.015 mL APS everyday by gavage,and the mice in the BRK-high group were given 0.030 mL APS everyday by gavage for three days.The wet to dry weight(W/D)ratio of the lungs was observed every day.Bronchoalveolar lavage fluids(BALFs)were collected from the left lungs to measure the BALF protein level and neutrophil count after 72 h of treatment.The IL-6,IL-1β,and TNF-αlevels in BALF were also measured.HE staining was done to observe the histopathological changes in the lungs.Results:The ALI mice in the BRK-high group had significantly increased W/D(P<0.01).ELISA results showed that the DXM group and BRK-high group had significantly decreased BALF protein content(P<0.01),neutrophil count(P<0.01),and IL-6,IL-1β,and TNF-αlevels(P<0.01).Hematoxylin and eosin(H&E)results showed that the DXM group and BRK-high group had alleviated alveolar tissue injury,edema,bleeding,and inflammation.Conclusions:The BRK can decrease the W/D,BALF protein content,neutrophil count,and TNF-α,IL-1β,and IL-6 levels and alleviate the histopathological changes in the lungs of ALI mice. 展开更多
关键词 pertussis acute lung injury inflammation bronchoalveolar lavage fluids
下载PDF
Ligustrazine alleviates acute lung injury in a rat model of acute necrotizing pancreatitis 被引量:10
19
作者 Jian-Xin Zhang and Sheng-Chun Dang Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2006年第4期605-609,共5页
BACKGROUND: Acute necrotizing pancreatitis leads to a systemic inflammatory response characterized by widespread leukocyte activation and, as a consequence, distant lung injury. The aim of this study was to evaluate t... BACKGROUND: Acute necrotizing pancreatitis leads to a systemic inflammatory response characterized by widespread leukocyte activation and, as a consequence, distant lung injury. The aim of this study was to evaluate the effect of ligustrazine, extracted from Ligusticum wallichii a traditional Chinese medicine, on lung injury in a rat model of acute necrotizing pancreatitis (ANP). METHODS: A total of 192 rats were randomly divided into three groups: control (C group); ANP without treatment (P group); and ANP treated with ligustrazine (T group). Each group was further divided into 0.5, 2, 6 and 12 hours subgroups. All rats were anesthetized with an intraperitoneal injection of sodium pentobarbital. Sodium taurocholate was infused through the pancreatic membrane to induce ANP. For the T group, sodium taurocholate was infused as above, then 0.6% ligustrazine was administered via the femoral vein. The effects of ligustrazine on the severity of lung injury were assessed by lung wet/dry weight ratio, myeloperoxidase (MPO) activity and histopathological changes. Pulmonary blood flow was determined by the radioactive microsphere technique (RMT). RESULTS: The blood flow in the P group was significantly lower than that of the C group, while the blood flow in the T group was significantly higher than that of the P group but showed no significant difference from the C group. Compared with C group, the lung wet/dry ratios in both the P and T groups were significantly increased, but there was no significant difference between them. The MPO activity in the P group was greatly increased over that of the C group. In the T group, although the MPO activity was also higher than in the C group, it much less increased than in the P group. Moreover, the difference between P and T groups was significant after 0.5 to 12 hours. After induction of the ANP model, the pancreas showed mild edema and congestion; the longer the time, the more severe this became. The pulmonary pathological changes wereaggravated significantly in the P group. Histopathological scores were higher in the P group than in the C group throughout the experimental course. Histopathological scores in the T group were lower than those in the P group at 6 and 12 hours. CONCLUSIONS: Microcirculatory disorder is an important factor of lung injury in ANP. Ligustrazine can ameliorate microcirculatory disorder and alleviate the damage to the lung. 展开更多
关键词 PANCREATITIS MICROCIRCULATION LIGUSTRAZINE lung injury
下载PDF
Establishment of the critical period of severe acute pancreatitis-associated lung injury 被引量:10
20
作者 Chen, Yi-Peng Ning, Jian-Wen Ji, Feng 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2009年第5期535-540,共6页
BACKGROUND: Since respiratory dysfunction is the main cause of death in patients with severe acute pancreatitis (SAP), elucidating the critical period of acute pancreatitis-associated lung injury (APALI) is of importa... BACKGROUND: Since respiratory dysfunction is the main cause of death in patients with severe acute pancreatitis (SAP), elucidating the critical period of acute pancreatitis-associated lung injury (APALI) is of important clinical value. This study aimed to define the risk period of APALI by a series of studies including a dynamic analysis of total water content, ultrastructure and number of type II alveolar epithelial cells, and reactive oxygen metabolites (ROMs) of lung tissue in a mouse model of SAP, and a clinical analysis of APALI patients. METHODS: ICR mice were selected to establish a SAP model. They were given 7 intraperitoneal injections of cerulein (50 mu g/kg body weight) at hourly intervals, followed by an intraperitoneal injection of lipopolysaccharide (15 mg/kg body weight). The total water content, ultrastructure, and number of type II alveolar epithelial cells, and ROMs of lung tissue were assessed before (0 hour) and after the establishment of SAP model (6 hours, 12 hours, I day, 4 days, and 7 days). In addition, we analyzed the data from 215 patients with APALI (PaO(2) <60 mmHg) treated at our hospital between January 1998 and December 2006. Statistical analyses were made using the F test. P values less than 0.05 were regarded as statistically significant. RESULTS: The total water content and ultrastructure of type II alveolar epithelial cells (mitochondria and lamellar bodies) of the lung in the SAP mice were significantly altered at 12 hours after the establishment of SAP model, and reached a maximum at I to 4 days. The number of type II alveolar epithelial cells and ROMs increased maximally at I day after the establishment of the model. Furthermore, clinical results showed that lung injury occurred at a mean of 3.1435 +/- 1.0199 days in patients with SAP. These clinical data were almost consistent with the results of the SAP model. CONCLUSION: The risk period for APALI is between the first and fourth day during the course of SAP. 展开更多
关键词 PANCREATITIS lung injury critical period
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部