Sepsis is a life-threatening condition caused by a dysregulated response of the body in response to an infection that harms its tissues and organs.Interleukin-6(IL-6)is a significant component of the inflammatory resp...Sepsis is a life-threatening condition caused by a dysregulated response of the body in response to an infection that harms its tissues and organs.Interleukin-6(IL-6)is a significant component of the inflammatory response as part of the pa-thogenesis of sepsis.It aids in the development of Acute lung injury and,subse-quently,multiple organ dysfunction syndrome.This letter probes into the corre-lation between plasma IL-6 levels and the risk of developing acute lung injury and multiple organ dysfunction syndrome in critically ill patients with sepsis.While it shows promising results,limitations like its observational study design,a limited sample size,a single center involvement,single-time-point measurement,and a lack of a control group restrain its cogency.The study is a big step in identifying IL-6 as a biomarker to improve patient care.展开更多
Sepsis is a life-threatening multiple organ dysfunction syndrome caused by the imbalance of the immune response to infection,featuring complex and variable conditions,and is one of the leading causes of mortality in I...Sepsis is a life-threatening multiple organ dysfunction syndrome caused by the imbalance of the immune response to infection,featuring complex and variable conditions,and is one of the leading causes of mortality in ICU patients.Lung injury is a common organ damage observed in sepsis patients.Macrophages and Th17 cells,as crucial components of innate and adaptive immunity,play pivotal roles in the development of sepsis-induced acute lung injury(ALI).This review summarizes the alterations and mechanisms of macrophages and Th17 cells in sepsis-induced ALI.By focusing on the“cross-talk”between macrophages and Th17 cells,this review aims to provide a solid theoretical foundation for further exploring the therapeutic targets of traditional Chinese medicine formulas in the treatment of sepsis complicated with ALI,thereby offering insights and guidance for the clinical application of traditional Chinese medicine in managing sepsis-associated ALI.展开更多
BACKGROUND Sepsis is a life-threatening condition characterized by a dysregulation of the host response to infection that can lead to acute lung injury(ALI)and multiple organ dysfunction syndrome(MODS).Interleukin 6(I...BACKGROUND Sepsis is a life-threatening condition characterized by a dysregulation of the host response to infection that can lead to acute lung injury(ALI)and multiple organ dysfunction syndrome(MODS).Interleukin 6(IL-6)is a pro-inflammatory cytokine that plays a crucial role in the pathogenesis of sepsis and its complications.AIM To investigate the relationship among plasma IL-6 levels,risk of ALI,and disease severity in critically ill patients with sepsis.METHODS This prospective and observational study was conducted in the intensive care unit of a tertiary care hospital between January 2021 and December 2022.A total of 83 septic patients were enrolled.Plasma IL-6 levels were measured upon admission using an enzyme-linked immunosorbent assay.The development of ALI and MODS was monitored during hospitalization.Disease severity was evaluated by Acute Physiology and Chronic Health Evaluation II(APACHE II)and Sequential Organ Failure Assessment(SOFA)scores.RESULTS Among the 83 patients with sepsis,38(45.8%)developed ALI and 29(34.9%)developed MODS.Plasma IL-6 levels were significantly higher in patients who developed ALI than in those without ALI(median:125.6 pg/mL vs 48.3 pg/mL;P<0.001).Similarly,patients with MODS had higher IL-6 levels than those without MODS(median:142.9 pg/mL vs 58.7 pg/mL;P<0.001).Plasma IL-6 levels were strongly and positively correlated with APACHE II(r=0.72;P<0.001)and SOFA scores(r=0.68;P<0.001).CONCLUSIONElevated plasma IL-6 levels in critically ill patients with sepsis were associated with an increased risk of ALI andMODS.Higher IL-6 levels were correlated with greater disease severity,as reflected by higher APACHE II andSOFA scores.These findings suggest that IL-6 may serve as a biomarker for predicting the development of ALI anddisease severity in patients with sepsis.展开更多
Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechan...Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechanisms by which miR-451 in hUC-MSC-Exos reduces ALI by modulating macrophage autophagy.Methods Exosomes were isolated from hUC-MSCs.Severe burn-induced ALI rat models were treated with hUC-MSC-Exos carrying the miR-451 inhibitor.Hematoxylin-eosin staining evaluated inflammatory injury.Enzyme-linked immunosorbnent assay measured lipopolysaccharide(LPS),tumor necrosis factor-α,and interleukin-1βlevels.qRT-PCR detected miR-451 and tuberous sclerosis complex 1(TSC1)expressions.The regulatory role of miR-451 on TSC1 was determined using a dual-luciferase reporter system.Western blotting determined TSC1 and proteins related to the mammalian target of rapamycin(mTOR)pathway and autophagy.Immunofluorescence analysis was conducted to examine exosomes phagocytosis in alveolar macrophages and autophagy level.Results hUC-MSC-Exos with miR-451 inhibitor reduced burn-induced ALI and promoted macrophage autophagy.MiR-451 could be transferred from hUC-MSCs to alveolar macrophages via exosomes and directly targeted TSC1.Inhibiting miR-451 in hUC-MSC-Exos elevated TSC1 expression and inactivated the mTOR pathway in alveolar macrophages.Silencing TSC1 activated mTOR signaling and inhibited autophagy,while TSC1 knockdown reversed the autophagy from the miR-451 inhibitor-induced.Conclusion miR-451 from hUC-MSC exosomes improves ALI by suppressing alveolar macrophage autophagy through modulation of the TSC1/mTOR pathway,providing a potential therapeutic strategy for ALI.展开更多
In the face of increasingly serious environmental pollution,the health of human lung tissues is also facing serious threats.Mogroside IIE(M2E)is the main metabolite of sweetening agents mogrosides from the anti-tussiv...In the face of increasingly serious environmental pollution,the health of human lung tissues is also facing serious threats.Mogroside IIE(M2E)is the main metabolite of sweetening agents mogrosides from the anti-tussive Chinese herbal Siraitia grosvenori.The study elucidated the anti-inflammatory action and molecular mechanism of M2E against acute lung injury(ALI).A lipopolysaccharide(LPS)-induced ALI model was established in mice and MH-S cells were employed to explore the protective mechanism of M2E through the western blotting,co-immunoprecipitation,and quantitative real time-PCR analysis.The results indicated that M2E alleviated LPS-induced lung injury through restraining the activation of secreted phospholipase A2 type IIA(Pla2g2a)-epidermal growth factor receptor(EGFR).The interaction of Pla2g2a and EGFR was identified by co-immunoprecipitation.In addition,M2E protected ALI induced with LPS against inflammatory and damage which were significantly dependent upon the downregulation of AKT and m TOR via the inhibition of Pla2g2a-EGFR.Pla2g2a may represent a potential target for M2E in the improvement of LPS-induced lung injury,which may represent a promising strategy to treat ALI.展开更多
Acute lung injury(ALI)has multiple causes and can easily progress to acute respiratory distress syndrome(ARDS)if not properly treated.Nuclear factorκB(NF-κB)is a key pathway in the treatment of ALI/ARDS.By exploring...Acute lung injury(ALI)has multiple causes and can easily progress to acute respiratory distress syndrome(ARDS)if not properly treated.Nuclear factorκB(NF-κB)is a key pathway in the treatment of ALI/ARDS.By exploring the relevance of NF-κB and the pathogenesis of this disease,it was found that this disease was mainly associated with inflammation,dysfunction of the endothelial barrier,oxidative stress,impaired clearance of alveolar fluid,and coagulation disorders.Traditional Chinese medicine(TCM)has the characteristics of multitargeting,multipathway effects,and high safety,which can directly or indirectly affect the treatment of ALI/ARDS.This article summarizes the mechanism and treatment strategies of TCM in recent years through intervention in the NF-κB-related signaling pathways for treating ALI/ARDS.It provides an overview from the perspectives of Chinese herbal monomers,TCM couplet medicines,TCM injections,Chinese herbal compounds,and Chinese herbal preparations,offering insights into the prevention and treatment of ALI/ARDS with TCM.展开更多
In this review,the databases searched were PubMed and Web of Science.It is believed that the main causes of acute lung injury(ALI)and acute respiratory distress syndrome(ARDS)are inflammatory response disorders,excess...In this review,the databases searched were PubMed and Web of Science.It is believed that the main causes of acute lung injury(ALI)and acute respiratory distress syndrome(ARDS)are inflammatory response disorders,excessive oxidative stress,cell death,endoplasmic reticulum stress,coagulation dysfunction,and weakened aquaporin function.展开更多
AIM To identify circulating micro(mi)RNAs as biological markers for prediction of severe acute pancreatitis(SAP) with acute lung injury(ALI).METHODS Twenty-four serum samples were respectively collected and classified...AIM To identify circulating micro(mi)RNAs as biological markers for prediction of severe acute pancreatitis(SAP) with acute lung injury(ALI).METHODS Twenty-four serum samples were respectively collected and classified as SAP associated with ALI and SAP without ALI, and the mi RNA expression profiles were determined by microarray analysis. These mi RNAs were validated by quantitative reverse transcriptionpolymerase chain reaction, and their putative targets were predicted by the online software Target Scan, mi Randa and Pic Tar database. Gene ontology(GO) and Kyoto encyclopedia of genes and genomes(commonly known as KEGG) were used to predict their possible functions and pathways involved.RESULTS We investigated 287 mi RNAs based on microarray data analysis. Twelve mi RNAs were differentially expressed in the patients with SAP with ALI and those with SAP without ALI. Hsa-mi R-1260 b, 762, 22-3 p, 23 b and 23 a were differently up-regulated and hsa-mi R-550 a*, 324-5 p, 484, 331-3 p, 140-3 p, 342-3 p and 150 were differently down-regulated in patients with SAP with ALI compared to those with SAP without ALI. In addition, 85 putative target genes of the significantly dysregulated mi RNAs were found by Target Scan, mi Randa and Pic Tar. Finally, GO and pathway network analysis showed that they were mainly enriched in signal transduction, metabolic processes, cytoplasm and cell membranes.CONCLUSION This is the first study to identify 12 circulating mi RNAs in patients with SAP with ALI, which may be biomarkers for prediction of ALI after SAP.展开更多
AIM: To assess the therapeutic effect of Caspase-1 inhibitors (ICE-I) on acute lung injury (ALI) in experimental severe acute pancreatitis (SAP). METHODS: Forty-two SD rats were randomly divided into 3 groups...AIM: To assess the therapeutic effect of Caspase-1 inhibitors (ICE-I) on acute lung injury (ALI) in experimental severe acute pancreatitis (SAP). METHODS: Forty-two SD rats were randomly divided into 3 groups: healthy controls (HC, n = 6); SAP-S group (n = 18); SAP-ICE-i group (n = 18). SAP was induced by retrograde infusion of 5% sodium taurocholate into the bile-pancreatic duct. HC rats underwent the same surgical procedures and duct cannulation without sodium taurocholate infusion, in SAP-S group, rats received the first intraperitoneal injection of isotonic saline 2 h after induction of acute pancreatitis and a repeated injection after 12 h. In SAP-ICE-I group, the rats were firstly given ICE inhibitors intraperitoneally 2 h after induction of pancreatitis. As in SAP-S group, the injection was repeated at 12 h. Serum 1L-1β was measured by EUSA. Intrapulmonary expression of Caspase-1, IL-1β and IL-18 mRNA were detected by semi-quantitative RT-PCR. The wet/dry weight ratios and histopathological changes of the lungs were also evaluated. RESULTS: Serum IL-1β levels in SAP-S group were 276.77 ± 44.92 pg/mL at 6 h, 308.99 ± 34.95 pg/mL at 12 h, and 311.60 ± 46.51 pg/mL at 18 h, which were increased significantly (P 〈 0.01, vs HC). in SAP- ICE-I group, those values were decreased significantly (P 〈 0.01, vs SAP-S). intrapulmonary expression of Caspase-1, IL-1β and IL-18 mRNA were observed in the HC group, while they were increased significantly in the SAP-S group (P 〈 0.01, vs HC). The expression of IL-lβ and IL-18 mRNA were decreased significantly in the SAP- ICE-I group (P 〈 0.01, vs SAP-S), whereas Caspase-1 mRNA expression had no significant difference (P 〉 0.05). The wet/dry weight ratios of the lungs in the SAP-S group were increased significantly (P 〈 0.05 at 6 h, P 〈 0.01 at 12 h and 18 h, vs HC) and they were decreased significantly in the SAP-ICE-I group (P 〈 0.05, vs SAP-S).Caspase-1 inhibitors ameliorated the severity of ALl in SAP.CONCLUSION: Caspase-1 activation, and overproduction of IL-1β and IL-18 play an important role in the course of ALI, and Caspase-1 inhibition is effective for the treatment of ALI in experimental SAP.展开更多
BACKGROUND: Acute lung injury (ALI) is the most common and severe complication of severe acute pancreatitis (SAP). The elucidation of the mechanism of ALI contributes to the diagnosis and treatment of the illness. In ...BACKGROUND: Acute lung injury (ALI) is the most common and severe complication of severe acute pancreatitis (SAP). The elucidation of the mechanism of ALI contributes to the diagnosis and treatment of the illness. In this study, we studied the pathogenesis of ALI in rats with severe acute pancreatitis. METHODS: The rats were sacrificed at 1, 3, 5, 6, 9 and 12 hours after the establishment of the model of SAP. Pancreas and lung tissues were obtained for pathological study, and examination of microvascular permeability and myeloperoxidase (MPO) examination. The gene expressions of tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) in the pancreas and lung tissues were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: After the establishment of the SAP model, the degree of pancreatic and lung injury increased gradually along with the gradual increase of MPO activity and micro-vascular permeability. Gene expressions of TNF-α and ICAM-1 in the pancreas rose at 1 hour and peaked at 7 hours. In contrast, their gene expression in the lungs rose slightly at 1 hour and peaked at 9-12 hours. CONCLUSION: An obvious time window existed between SAP and lung injury, which is beneficial to the early prevention of the development of ALI.展开更多
AIM: To investigate the mechanism of resveratrol underlying the microcirculation disorder and lung injury following severe acute pancreatitis (SAP). METHODS: Twenty-four rats were divided into 3 groups (SAP, sham and ...AIM: To investigate the mechanism of resveratrol underlying the microcirculation disorder and lung injury following severe acute pancreatitis (SAP). METHODS: Twenty-four rats were divided into 3 groups (SAP, sham and resveratrol groups) randomly. SAP model was established by injecting 4% sodium taurocholate l mL/kg through puncturing pancreatic ducts. Sham (control) group (8 rats) was established by turning over the duodenum. Resveratrol was given at 0.1 mg/kg b.m. intraperitoneally. Rats were sacrificed 9 h after SAP was induced. Blood samples were obtained for hemorrheological examination. Lung tissues were used for pathological observation, and examination of microvascular permeability, dry/wet ratio and myeloperoxidase (MPO) activity. Gene expression of intercellular adhesion molecule-1 (ICAM-1) was detected by RT-PCR. RESULTS: Compared with SAP group, resveratrol relieved the edema and infiltration of leukocytes in the lungs. Resveratrol improved markers of hemorrheology: high VTB (5.77±1.18 mPas vs9.49±1.34 mPas), low VTB (16.12±3.20 mPas vs30.91±7.28 mPas), PV (4.69±1.68 mPas vs 8.00±1.34 mPas), BSR (1.25±0.42 mm/h vs50.03±0.03 mm/h), VPC (54.67±3.08% vs 62.17±3.39%), fibrinogen (203.2?7.8 g/ L vs 51.3±19.1 g/L), original hemolysis (0.45±0.02 vs 0.49±0.02), and complete hemolysis (0.41±0.02 vs 0.43±0.02) (P<0.05). Resveratrol decreased the OD ratio of ICAM-1 gene (0.800±0.03 vs 1.188±0.10), dry/wet ratio (0.74±0.02 vs 0.77±0.03), microvascular permeability (0.079±0.006 vs 0.112±0.004) and MPO activity (4.42±0.32 vs 5.03±0.51) significantly (P<0.05). CONCLUSION: Resveratrol can improve the microcirculation disorder of the lung by decreasing leukocyte-endothelial interaction, reducing blood viscosity, improving the decrease of blood flow, and stabilizing erythrocytes in SAP rats. It may be a potential candidate to treat SAP and its severe complications (ALI).展开更多
AIM: To observe the effect of proteasome inhibitor MG-132 on severe acute pancreatitis (SAP) and associated lung injury of rats. METHODS: Male adult SD rats were randomly divided into SAP group, sham-operation group, ...AIM: To observe the effect of proteasome inhibitor MG-132 on severe acute pancreatitis (SAP) and associated lung injury of rats. METHODS: Male adult SD rats were randomly divided into SAP group, sham-operation group, and MG-132 treatment group. A model of SAP was established by injection of 5% sodium taurocholate into the biliary- pancreatic duct of rats. The MG-132 group was pretreated with 10 mg/kg MG-132 intraperitoneally (ip) 30 min before the induction of pancreatitis. The changes in serum amylase, myeloperoxidase (MPO) activity of pancreatic and pulmonary tissue were measured. The TNF-α level in pancreatic cytosolic fractions was assayed with an enzyme-linked immunosorbent assay (ELISA) kit. Meanwhile, the pathological changes in both pancreatic and pulmonary tissues were also observed. RESULTS: MG-132 significantly decreased serum amylase, pancreatic weight/body ratio, pancreatic TNF-α level, pancreatic and pulmonary MPO activity (P < 0.05). Histopathological examinations revealed that pancreatic and pulmonary samples from rats pretreated with MG-132 demonstrated milder edema, cellular damage, and inflammatory activity (P < 0.05). CONCLUSION: The proteasome inhibitor MG-132 shows a protective effect on severe acute pancreatitis and associated lung injury of rats.展开更多
AIM: To investigate whether therapeutic treatment with melatonin could protect rats against acute pan- creatitis and its associated lung injury. METHODS: Seventy-two male Sprague-Dawley rats were randomly divided in...AIM: To investigate whether therapeutic treatment with melatonin could protect rats against acute pan- creatitis and its associated lung injury. METHODS: Seventy-two male Sprague-Dawley rats were randomly divided into three groups: the sham op- eration (SO), severe acute pancreatitis (SAP), and mel- atonin treatment (MT) groups. Acute pancreatitis was induced by infusion of 1 mL/kg of sodium taurocholate (4% solution) into the biliopancreatic duct. Melatonin (50 mg/kg) was administered 30 min before pancre- atitis was induced, and the severity of pancreatic and pulmonary injuries was evaluated 1, 4 and 8 h after induction. Serum samples were collected to measure amylase activities, and lung tissues were removed to measure levels of mRNAs encoding interleukin 22 (IL-22) and T helper cell 22 (Th22), as well as levels of IL-22.ing IL-22 and Th22 were significantly higher (P 〈 0.001) in the MT group than in the SAP group (0.526 ± 0.143 vs 0.156 ± 0.027, respectively, here and throughout, after 1 h; 0.489 ± 0.150 vs 0.113 ± 0.014 after 4 h; 0.524 ± 0.168 vs 0.069 ± 0.013 after 8 h, 0.378 ± 0.134 vs 0.122 ± 0.015 after 1 h; 0.205 ± 0.041 vs 0.076 ± 0.019 after 4 h; 0.302 ± 0.108 vs 0.045 ± 0.013 after 8 h, respectively) and significantly lower (P 〈 0.001) in the SAP group than in the SO group (0.156 ± 0.027 vs 1.000 ± 0.010 after 1 h; 0.113 ± 0.014 vs 1.041 ± 0.235 after 4 h; 0.069 ± 0.013 vs 1.110 ± 0.213 after 8 h, 0.122 ± 0.015 vs 1.000 ± 0.188 after 1 h; 0.076 ± 0.019 vs 0.899 ± 0.125 after 4 h; 0.045 ± 0.013 vs 0.991 ± 0.222 after 8 h, respectively). The mean pathologi- cal scores for pancreatic tissues in the MT group were significantly higher (P 〈 0.01) than those for samples in the SO group (1.088 ± 0.187 vs 0.488 ± 0.183 after 1 h, 2.450 ± 0.212 vs 0.469 ± 0.242 after 4 h; 4.994 ± 0.184 vs 0.513 ± 0.210 after 8 h), but were significantly lower (P 〈 0.01) than those for samples in the SAP group at each time point (1.088 ± 0.187 vs 1.969 ± 0.290 after 1 h; 2.450 ± 0.212 vs 3.344 ± 0.386 after 4 h; 4.994 ± 0.184 vs 6.981 ± 0.301 after 8 h). The severity of SAP increased significantly (P 〈 0.01) over time in the SAP group (1.088 ± 0.187 vs 2.450 ± 0.212 between 1 h and 4 h after inducing pancreatitis; and 2.450 ± 0.212 vs 4.994 ± 0.184 between 4 and 8 h after inducing pan- creatitis). CONCLUSION: Melatonin protects rats against acute pancreatitis-associated lung injury, probably through the upregulation of IL-22 and Th22, which increases the innate immunity of tissue cells and enhances their regeneration.展开更多
BACKGROUND: Acute lung injury(ALI) is a common and serious complication of severe acute pancreatitis(SAP). The study aimed to investigate the protective effect and mechanism of phosphatidylinositol-3 kinase(PI3K) inhi...BACKGROUND: Acute lung injury(ALI) is a common and serious complication of severe acute pancreatitis(SAP). The study aimed to investigate the protective effect and mechanism of phosphatidylinositol-3 kinase(PI3K) inhibitor Wortmannin in SAP associated with ALI.METHODS: Ninety rats were randomly divided into three groups: sham operation(SO) group(n=30), SAP group(n=30), and SAP+Wortmannin(SAP+W) group(n=30). SAP model was induced by retrograde injection of 4% sodium taurocholate into the biliopancreatic duct of rats. The rate of lung water content, myeloperoxidase(MPO), matrix metalloproteinase 9(MMP-9), protein kinase B(PKB), abdphosphorylation of protein kinase B(P-PKB) activity in the lung tissue were evaluated.RESULTS: In the SAP group, the p-PKB expression in the lung tissue began to rise at 3 hours after modeling, and peaked at 12 hours(P<0.05); the rate of lung water content, MPO and TNF-α activity were also gradually increased, and the degree of lung lesion gradually increased(P<0.05). In the SAP+Wortmannin group, the p-PKB expression in the lung tissue began to rise at 3 hours after modeling, and peaked at 12 hours; it was higher than that in the SO group(P<0.05), but significantly lower than that in the SAP group(P<0.05). The rest indicators in the SAP+Wortmannin group were also significantly decreased as compared with the SAP group(P<0.05).CONCLUSIONS: The expression of phosphatidylinositol-3 kinase/protein kinase B was elevated in severe pancreatitis rats with lung injury. This suggested that PI3 K signal transduction pathway is involved in the control and release of proinfl ammatory cytokines TNF-α, which may play an important role in the pathogenesis of severe acute pancreatitis associated with lung injury. This finding indicated that Wortmannin can block the PI3 K signal transduction pathway, and inhibit the release of infl ammatory factor TNF-α.展开更多
BACKGROUND Acute lung injury(ALI)is a common and life-threatening complication of severe acute pancreatitis(SAP).There are currently limited effective treatment options for SAP and associated ALI.Calycosin(Cal),a bioa...BACKGROUND Acute lung injury(ALI)is a common and life-threatening complication of severe acute pancreatitis(SAP).There are currently limited effective treatment options for SAP and associated ALI.Calycosin(Cal),a bioactive constituent extracted from the medicinal herb Radix Astragali exhibits potent anti-inflammatory properties,but its effect on SAP and associated ALI has yet to be determined.AIM To identify the roles of Cal in SAP-ALI and the underlying mechanism.METHODS SAP was induced via two intraperitoneal injections of L-arg(4 g/kg)and Cal(25 or 50 mg/kg)were injected 1 h prior to the first L-arg challenge.Mice were sacrificed 72 h after the induction of SAP and associated ALI was examined histologically and biochemically.An in vitro model of lipopolysaccharide(LPS)-induced ALI was established using A549 cells.Immunofluorescence analysis and western blot were evaluated in cells.Molecular docking analyses were conducted to examine the interaction of Cal with HMGB1.RESULTS Cal treatment substantially reduced the serum amylase levels and alleviated histopathological injury associated with SAP and ALI.Neutrophil infiltration and lung tissue levels of neutrophil mediator myeloperoxidase were reduced in line with protective effects of Cal against ALI in SAP.Cal treatment also attenuated the serum levels and mRNA expression of pro-inflammatory cytokines tumor necrosis factor-α,interleukin-6,IL-1β,HMGB1 and chemokine(CXC motif)ligand 1 in lung tissue.Immunofluorescence and western blot analyses showed that Cal treatment markedly suppressed the expression of HMGB1 and phosphorylated nuclear factor-kappa B(NF-κB)p65 in lung tissues and an in vitro model of LPSinduced ALI in A549 cells suggesting a role for HGMB1 in the pathogenesis of ALI.Furthermore,molecular docking analysis provided evidence for the direct interaction of Cal with HGMB1.CONCLUSION Cal protects mice against L-arg-induced SAP and associated ALI by attenuating local and systemic neutrophil infiltration and inflammatory response via inhibition of HGMB1 and the NF-κB signaling pathway.展开更多
Nickel carbonyl is a highly toxic metal compound produced from the reaction that occurs between nickel and carbon monoxide under pressure. As previously reported, nickel carbonyl can cause acute aspiration pneumonia, ...Nickel carbonyl is a highly toxic metal compound produced from the reaction that occurs between nickel and carbon monoxide under pressure. As previously reported, nickel carbonyl can cause acute aspiration pneumonia, and animal experiments showed it was toxic to animal lung, liver, brain, and other vital organs[1]. However, few studies have investigated nickel carbonyl poisoning in humans.展开更多
Objective:To investigate the effect of salvia miltiorrhiza on expression of the MMP-2、9 and TIMP-1、TIMP-2 in tissue of acute lung injury of severe acute pancreatitis(SAP).Methods:MMP-2、9 expression and changes of t...Objective:To investigate the effect of salvia miltiorrhiza on expression of the MMP-2、9 and TIMP-1、TIMP-2 in tissue of acute lung injury of severe acute pancreatitis(SAP).Methods:MMP-2、9 expression and changes of the lung were measured after the SAP rats were induced by retrograde injection of 5%sodium tauocholate into hepatopancreatic duct.The changes of those parameters were also measured after salvia miltiorrhiza was injected intramuscularly just after induction of SAP.Results:The level of MMP-2、9 in pancreas and lung in SAP group were significantly higher than those in sham;The level of MMP-2、9 in salvia miltiorrhiza group were significantly lower than those in SAP group. Conclusion:MMP-2、9 were overexpressed in Acute lung injury (ALI) induced by SAP, salvia miltiorrhiza downregulates MMP-2、9 expression and decreased injury of lung tissue.展开更多
Objective:To study the pathogenesis of acute lung injury in severe acute pancreatitis (SAP). Methods:Rats were sacrificed at 1, 3, 5, 6, 9 and 12 h after establishment of inducing model. Pancreas and lung tissues were...Objective:To study the pathogenesis of acute lung injury in severe acute pancreatitis (SAP). Methods:Rats were sacrificed at 1, 3, 5, 6, 9 and 12 h after establishment of inducing model. Pancreas and lung tissues were obtained for pathological study, microvascular permeability and MPO examination. Gene expressions of TNF-α and ICAM-1 in pancreas and lung tissues were detected by RT-PCR. Results:After inducing SAP model, the injury degree of the pancreas and the lung increased gradually, accompanied with gradually increased MPO activity and microvascular permeability. Gene expressions of TNF-α and ICAM-1 in pancreas rose at 1 h and reached peak at 7 h. Relatively, their gene expressions in the lungs only rose slightly at 1 h and reached peak at 9-12 h gradually. Conclusion:There is an obvious time window between SAP and lung injury, when earlier protection is beneficial to prevent development of acute lung injury.展开更多
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in acute pancreatitis still represents a substantial problem,with a mortality rate in the range of 30%-40%.The present review evaluates underlying...Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in acute pancreatitis still represents a substantial problem,with a mortality rate in the range of 30%-40%.The present review evaluates underlying pathophysiological mechanisms in both ALI and ARDS and potential clinical implications.Several mediators and pathophysiological pathways are involved during the different phases of ALI and ARDS.The initial exudative phase is characterized by diffuse alveolar damage,microvascular injury and influx of inflammatory cells.This phase is followed by a fibro-proliferative phase with lung repair,type Ⅱ pneumocyte hypoplasia and proliferation of fibroblasts.Proteases derived from polymorphonuclear neutrophils,various pro-inflammatory mediators,and phospholipases are all involved,among others.Contributing factors that promote pancreatitis-associated ALI may be found in the gut and mesenteric lymphatics.There is a lack of complete understanding of the underlying mechanisms,and by improving our knowledge,novel tools for prevention and intervention may be developed,thus contributing to improved outcome.展开更多
This study aims to elucidate the mechanisms by which dexmedetomidine alleviates pulmonary edema in rats with acute lung injury induced by lipopolysaccharide (LPS). Male Wistar rats were randomly divided into five gr...This study aims to elucidate the mechanisms by which dexmedetomidine alleviates pulmonary edema in rats with acute lung injury induced by lipopolysaccharide (LPS). Male Wistar rats were randomly divided into five groups: normal saline control (NS) group, receiving intravenous 0.9% normal saline (5 mL/kg); LPS group, receiving intravenous LPS (10 mg/kg); small-dose dexmedetomidine (S) group, treated with a small dose of dexmedetomidine (0.5 μg·kg^-1·h^-1); medium-dose dexmedetomidine (M) group, treated with a medium dose of dexmedetomidine (2.5 μg·kg^-1·h^-1); high-dose dexmedetomidine (H) group, treated with a high dose of dexmedetomidine (5μg·kg^-1·h^-1). The rats were sacrificed 6 h after intravenous injection of LPS or NS, and the hmgs were removed for evaluating histological characteristics and determining the lung wet/dry weight ratio (W/D). The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) in the lung tissues were assessed by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein expression levels of aquaporin-1 (AQP1) and aquaporin-5 (AQP5) were detected by RT-PCR, immunohistochemistry, and Western blot- ting. The lung tissues from the LPS groups were significantly damaged, which were less pronounced in the H group but not in the small-dose dexmedetomidine group or medium-dose dexmedetomidine group. The W/D and the concentrations of TNF-α and IL-1β in the pulmonary tissues were increased in the LPS group as compared with those in NS group, which were reduced in the H group but not in S group or M group (P〈0.01). The expression of AQP1 and AQP5 was lower in the LPS group than in the NS group, and significantly increased in the H group but not in the S group or M group (P〈0.01). Our findings suggest that dexmedetomidine may alleviate pulmonary edema by increasing the expression of AQP-1 and AQP-5.展开更多
文摘Sepsis is a life-threatening condition caused by a dysregulated response of the body in response to an infection that harms its tissues and organs.Interleukin-6(IL-6)is a significant component of the inflammatory response as part of the pa-thogenesis of sepsis.It aids in the development of Acute lung injury and,subse-quently,multiple organ dysfunction syndrome.This letter probes into the corre-lation between plasma IL-6 levels and the risk of developing acute lung injury and multiple organ dysfunction syndrome in critically ill patients with sepsis.While it shows promising results,limitations like its observational study design,a limited sample size,a single center involvement,single-time-point measurement,and a lack of a control group restrain its cogency.The study is a big step in identifying IL-6 as a biomarker to improve patient care.
基金supported by the National Natural Science Foundation of China(No.82104581,No.82060864).
文摘Sepsis is a life-threatening multiple organ dysfunction syndrome caused by the imbalance of the immune response to infection,featuring complex and variable conditions,and is one of the leading causes of mortality in ICU patients.Lung injury is a common organ damage observed in sepsis patients.Macrophages and Th17 cells,as crucial components of innate and adaptive immunity,play pivotal roles in the development of sepsis-induced acute lung injury(ALI).This review summarizes the alterations and mechanisms of macrophages and Th17 cells in sepsis-induced ALI.By focusing on the“cross-talk”between macrophages and Th17 cells,this review aims to provide a solid theoretical foundation for further exploring the therapeutic targets of traditional Chinese medicine formulas in the treatment of sepsis complicated with ALI,thereby offering insights and guidance for the clinical application of traditional Chinese medicine in managing sepsis-associated ALI.
文摘BACKGROUND Sepsis is a life-threatening condition characterized by a dysregulation of the host response to infection that can lead to acute lung injury(ALI)and multiple organ dysfunction syndrome(MODS).Interleukin 6(IL-6)is a pro-inflammatory cytokine that plays a crucial role in the pathogenesis of sepsis and its complications.AIM To investigate the relationship among plasma IL-6 levels,risk of ALI,and disease severity in critically ill patients with sepsis.METHODS This prospective and observational study was conducted in the intensive care unit of a tertiary care hospital between January 2021 and December 2022.A total of 83 septic patients were enrolled.Plasma IL-6 levels were measured upon admission using an enzyme-linked immunosorbent assay.The development of ALI and MODS was monitored during hospitalization.Disease severity was evaluated by Acute Physiology and Chronic Health Evaluation II(APACHE II)and Sequential Organ Failure Assessment(SOFA)scores.RESULTS Among the 83 patients with sepsis,38(45.8%)developed ALI and 29(34.9%)developed MODS.Plasma IL-6 levels were significantly higher in patients who developed ALI than in those without ALI(median:125.6 pg/mL vs 48.3 pg/mL;P<0.001).Similarly,patients with MODS had higher IL-6 levels than those without MODS(median:142.9 pg/mL vs 58.7 pg/mL;P<0.001).Plasma IL-6 levels were strongly and positively correlated with APACHE II(r=0.72;P<0.001)and SOFA scores(r=0.68;P<0.001).CONCLUSIONElevated plasma IL-6 levels in critically ill patients with sepsis were associated with an increased risk of ALI andMODS.Higher IL-6 levels were correlated with greater disease severity,as reflected by higher APACHE II andSOFA scores.These findings suggest that IL-6 may serve as a biomarker for predicting the development of ALI anddisease severity in patients with sepsis.
基金supported by the tenth batch of"3221"industrial innovation and scientific research projects in Bengbu City(beng talent[2020]No.8)the 2021 Bengbu Medical College Science and Technology Project[Natural Science,Project Number:2021byzd217].
文摘Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechanisms by which miR-451 in hUC-MSC-Exos reduces ALI by modulating macrophage autophagy.Methods Exosomes were isolated from hUC-MSCs.Severe burn-induced ALI rat models were treated with hUC-MSC-Exos carrying the miR-451 inhibitor.Hematoxylin-eosin staining evaluated inflammatory injury.Enzyme-linked immunosorbnent assay measured lipopolysaccharide(LPS),tumor necrosis factor-α,and interleukin-1βlevels.qRT-PCR detected miR-451 and tuberous sclerosis complex 1(TSC1)expressions.The regulatory role of miR-451 on TSC1 was determined using a dual-luciferase reporter system.Western blotting determined TSC1 and proteins related to the mammalian target of rapamycin(mTOR)pathway and autophagy.Immunofluorescence analysis was conducted to examine exosomes phagocytosis in alveolar macrophages and autophagy level.Results hUC-MSC-Exos with miR-451 inhibitor reduced burn-induced ALI and promoted macrophage autophagy.MiR-451 could be transferred from hUC-MSCs to alveolar macrophages via exosomes and directly targeted TSC1.Inhibiting miR-451 in hUC-MSC-Exos elevated TSC1 expression and inactivated the mTOR pathway in alveolar macrophages.Silencing TSC1 activated mTOR signaling and inhibited autophagy,while TSC1 knockdown reversed the autophagy from the miR-451 inhibitor-induced.Conclusion miR-451 from hUC-MSC exosomes improves ALI by suppressing alveolar macrophage autophagy through modulation of the TSC1/mTOR pathway,providing a potential therapeutic strategy for ALI.
基金the National Natural Science Foundation(81773982,82003937)Youth Academic leaders of the Qinglan Project in Jiangsu province for financial support。
文摘In the face of increasingly serious environmental pollution,the health of human lung tissues is also facing serious threats.Mogroside IIE(M2E)is the main metabolite of sweetening agents mogrosides from the anti-tussive Chinese herbal Siraitia grosvenori.The study elucidated the anti-inflammatory action and molecular mechanism of M2E against acute lung injury(ALI).A lipopolysaccharide(LPS)-induced ALI model was established in mice and MH-S cells were employed to explore the protective mechanism of M2E through the western blotting,co-immunoprecipitation,and quantitative real time-PCR analysis.The results indicated that M2E alleviated LPS-induced lung injury through restraining the activation of secreted phospholipase A2 type IIA(Pla2g2a)-epidermal growth factor receptor(EGFR).The interaction of Pla2g2a and EGFR was identified by co-immunoprecipitation.In addition,M2E protected ALI induced with LPS against inflammatory and damage which were significantly dependent upon the downregulation of AKT and m TOR via the inhibition of Pla2g2a-EGFR.Pla2g2a may represent a potential target for M2E in the improvement of LPS-induced lung injury,which may represent a promising strategy to treat ALI.
基金supported by the Construction Project of Tu Jinwen National Chinese Medical Master Inheritance Studio of National Administration of Traditional Chinese Medicine(National TCMEducation Letter[2022]No.245)Hubei Province Public Health Youth Top Talents Training Program(Hubei Health Notice[2021]No.74).
文摘Acute lung injury(ALI)has multiple causes and can easily progress to acute respiratory distress syndrome(ARDS)if not properly treated.Nuclear factorκB(NF-κB)is a key pathway in the treatment of ALI/ARDS.By exploring the relevance of NF-κB and the pathogenesis of this disease,it was found that this disease was mainly associated with inflammation,dysfunction of the endothelial barrier,oxidative stress,impaired clearance of alveolar fluid,and coagulation disorders.Traditional Chinese medicine(TCM)has the characteristics of multitargeting,multipathway effects,and high safety,which can directly or indirectly affect the treatment of ALI/ARDS.This article summarizes the mechanism and treatment strategies of TCM in recent years through intervention in the NF-κB-related signaling pathways for treating ALI/ARDS.It provides an overview from the perspectives of Chinese herbal monomers,TCM couplet medicines,TCM injections,Chinese herbal compounds,and Chinese herbal preparations,offering insights into the prevention and treatment of ALI/ARDS with TCM.
基金Yunnan Fundamental Research Projects(202201AU070167,202301AT070258)Yunnan Key Laboratory of Formulated Granules(202105AG070014).
文摘In this review,the databases searched were PubMed and Web of Science.It is believed that the main causes of acute lung injury(ALI)and acute respiratory distress syndrome(ARDS)are inflammatory response disorders,excessive oxidative stress,cell death,endoplasmic reticulum stress,coagulation dysfunction,and weakened aquaporin function.
基金Supported by the National Natural Science Foundation of China,No.30971626 and No.81473512
文摘AIM To identify circulating micro(mi)RNAs as biological markers for prediction of severe acute pancreatitis(SAP) with acute lung injury(ALI).METHODS Twenty-four serum samples were respectively collected and classified as SAP associated with ALI and SAP without ALI, and the mi RNA expression profiles were determined by microarray analysis. These mi RNAs were validated by quantitative reverse transcriptionpolymerase chain reaction, and their putative targets were predicted by the online software Target Scan, mi Randa and Pic Tar database. Gene ontology(GO) and Kyoto encyclopedia of genes and genomes(commonly known as KEGG) were used to predict their possible functions and pathways involved.RESULTS We investigated 287 mi RNAs based on microarray data analysis. Twelve mi RNAs were differentially expressed in the patients with SAP with ALI and those with SAP without ALI. Hsa-mi R-1260 b, 762, 22-3 p, 23 b and 23 a were differently up-regulated and hsa-mi R-550 a*, 324-5 p, 484, 331-3 p, 140-3 p, 342-3 p and 150 were differently down-regulated in patients with SAP with ALI compared to those with SAP without ALI. In addition, 85 putative target genes of the significantly dysregulated mi RNAs were found by Target Scan, mi Randa and Pic Tar. Finally, GO and pathway network analysis showed that they were mainly enriched in signal transduction, metabolic processes, cytoplasm and cell membranes.CONCLUSION This is the first study to identify 12 circulating mi RNAs in patients with SAP with ALI, which may be biomarkers for prediction of ALI after SAP.
文摘AIM: To assess the therapeutic effect of Caspase-1 inhibitors (ICE-I) on acute lung injury (ALI) in experimental severe acute pancreatitis (SAP). METHODS: Forty-two SD rats were randomly divided into 3 groups: healthy controls (HC, n = 6); SAP-S group (n = 18); SAP-ICE-i group (n = 18). SAP was induced by retrograde infusion of 5% sodium taurocholate into the bile-pancreatic duct. HC rats underwent the same surgical procedures and duct cannulation without sodium taurocholate infusion, in SAP-S group, rats received the first intraperitoneal injection of isotonic saline 2 h after induction of acute pancreatitis and a repeated injection after 12 h. In SAP-ICE-I group, the rats were firstly given ICE inhibitors intraperitoneally 2 h after induction of pancreatitis. As in SAP-S group, the injection was repeated at 12 h. Serum 1L-1β was measured by EUSA. Intrapulmonary expression of Caspase-1, IL-1β and IL-18 mRNA were detected by semi-quantitative RT-PCR. The wet/dry weight ratios and histopathological changes of the lungs were also evaluated. RESULTS: Serum IL-1β levels in SAP-S group were 276.77 ± 44.92 pg/mL at 6 h, 308.99 ± 34.95 pg/mL at 12 h, and 311.60 ± 46.51 pg/mL at 18 h, which were increased significantly (P 〈 0.01, vs HC). in SAP- ICE-I group, those values were decreased significantly (P 〈 0.01, vs SAP-S). intrapulmonary expression of Caspase-1, IL-1β and IL-18 mRNA were observed in the HC group, while they were increased significantly in the SAP-S group (P 〈 0.01, vs HC). The expression of IL-lβ and IL-18 mRNA were decreased significantly in the SAP- ICE-I group (P 〈 0.01, vs SAP-S), whereas Caspase-1 mRNA expression had no significant difference (P 〉 0.05). The wet/dry weight ratios of the lungs in the SAP-S group were increased significantly (P 〈 0.05 at 6 h, P 〈 0.01 at 12 h and 18 h, vs HC) and they were decreased significantly in the SAP-ICE-I group (P 〈 0.05, vs SAP-S).Caspase-1 inhibitors ameliorated the severity of ALl in SAP.CONCLUSION: Caspase-1 activation, and overproduction of IL-1β and IL-18 play an important role in the course of ALI, and Caspase-1 inhibition is effective for the treatment of ALI in experimental SAP.
基金This study was a grant from the National Natural Sci-ence Foundation of China (No. 30371398).
文摘BACKGROUND: Acute lung injury (ALI) is the most common and severe complication of severe acute pancreatitis (SAP). The elucidation of the mechanism of ALI contributes to the diagnosis and treatment of the illness. In this study, we studied the pathogenesis of ALI in rats with severe acute pancreatitis. METHODS: The rats were sacrificed at 1, 3, 5, 6, 9 and 12 hours after the establishment of the model of SAP. Pancreas and lung tissues were obtained for pathological study, and examination of microvascular permeability and myeloperoxidase (MPO) examination. The gene expressions of tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) in the pancreas and lung tissues were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: After the establishment of the SAP model, the degree of pancreatic and lung injury increased gradually along with the gradual increase of MPO activity and micro-vascular permeability. Gene expressions of TNF-α and ICAM-1 in the pancreas rose at 1 hour and peaked at 7 hours. In contrast, their gene expression in the lungs rose slightly at 1 hour and peaked at 9-12 hours. CONCLUSION: An obvious time window existed between SAP and lung injury, which is beneficial to the early prevention of the development of ALI.
基金Supported by the National Natural Science Foundation of China, No. 30371398
文摘AIM: To investigate the mechanism of resveratrol underlying the microcirculation disorder and lung injury following severe acute pancreatitis (SAP). METHODS: Twenty-four rats were divided into 3 groups (SAP, sham and resveratrol groups) randomly. SAP model was established by injecting 4% sodium taurocholate l mL/kg through puncturing pancreatic ducts. Sham (control) group (8 rats) was established by turning over the duodenum. Resveratrol was given at 0.1 mg/kg b.m. intraperitoneally. Rats were sacrificed 9 h after SAP was induced. Blood samples were obtained for hemorrheological examination. Lung tissues were used for pathological observation, and examination of microvascular permeability, dry/wet ratio and myeloperoxidase (MPO) activity. Gene expression of intercellular adhesion molecule-1 (ICAM-1) was detected by RT-PCR. RESULTS: Compared with SAP group, resveratrol relieved the edema and infiltration of leukocytes in the lungs. Resveratrol improved markers of hemorrheology: high VTB (5.77±1.18 mPas vs9.49±1.34 mPas), low VTB (16.12±3.20 mPas vs30.91±7.28 mPas), PV (4.69±1.68 mPas vs 8.00±1.34 mPas), BSR (1.25±0.42 mm/h vs50.03±0.03 mm/h), VPC (54.67±3.08% vs 62.17±3.39%), fibrinogen (203.2?7.8 g/ L vs 51.3±19.1 g/L), original hemolysis (0.45±0.02 vs 0.49±0.02), and complete hemolysis (0.41±0.02 vs 0.43±0.02) (P<0.05). Resveratrol decreased the OD ratio of ICAM-1 gene (0.800±0.03 vs 1.188±0.10), dry/wet ratio (0.74±0.02 vs 0.77±0.03), microvascular permeability (0.079±0.006 vs 0.112±0.004) and MPO activity (4.42±0.32 vs 5.03±0.51) significantly (P<0.05). CONCLUSION: Resveratrol can improve the microcirculation disorder of the lung by decreasing leukocyte-endothelial interaction, reducing blood viscosity, improving the decrease of blood flow, and stabilizing erythrocytes in SAP rats. It may be a potential candidate to treat SAP and its severe complications (ALI).
文摘AIM: To observe the effect of proteasome inhibitor MG-132 on severe acute pancreatitis (SAP) and associated lung injury of rats. METHODS: Male adult SD rats were randomly divided into SAP group, sham-operation group, and MG-132 treatment group. A model of SAP was established by injection of 5% sodium taurocholate into the biliary- pancreatic duct of rats. The MG-132 group was pretreated with 10 mg/kg MG-132 intraperitoneally (ip) 30 min before the induction of pancreatitis. The changes in serum amylase, myeloperoxidase (MPO) activity of pancreatic and pulmonary tissue were measured. The TNF-α level in pancreatic cytosolic fractions was assayed with an enzyme-linked immunosorbent assay (ELISA) kit. Meanwhile, the pathological changes in both pancreatic and pulmonary tissues were also observed. RESULTS: MG-132 significantly decreased serum amylase, pancreatic weight/body ratio, pancreatic TNF-α level, pancreatic and pulmonary MPO activity (P < 0.05). Histopathological examinations revealed that pancreatic and pulmonary samples from rats pretreated with MG-132 demonstrated milder edema, cellular damage, and inflammatory activity (P < 0.05). CONCLUSION: The proteasome inhibitor MG-132 shows a protective effect on severe acute pancreatitis and associated lung injury of rats.
文摘AIM: To investigate whether therapeutic treatment with melatonin could protect rats against acute pan- creatitis and its associated lung injury. METHODS: Seventy-two male Sprague-Dawley rats were randomly divided into three groups: the sham op- eration (SO), severe acute pancreatitis (SAP), and mel- atonin treatment (MT) groups. Acute pancreatitis was induced by infusion of 1 mL/kg of sodium taurocholate (4% solution) into the biliopancreatic duct. Melatonin (50 mg/kg) was administered 30 min before pancre- atitis was induced, and the severity of pancreatic and pulmonary injuries was evaluated 1, 4 and 8 h after induction. Serum samples were collected to measure amylase activities, and lung tissues were removed to measure levels of mRNAs encoding interleukin 22 (IL-22) and T helper cell 22 (Th22), as well as levels of IL-22.ing IL-22 and Th22 were significantly higher (P 〈 0.001) in the MT group than in the SAP group (0.526 ± 0.143 vs 0.156 ± 0.027, respectively, here and throughout, after 1 h; 0.489 ± 0.150 vs 0.113 ± 0.014 after 4 h; 0.524 ± 0.168 vs 0.069 ± 0.013 after 8 h, 0.378 ± 0.134 vs 0.122 ± 0.015 after 1 h; 0.205 ± 0.041 vs 0.076 ± 0.019 after 4 h; 0.302 ± 0.108 vs 0.045 ± 0.013 after 8 h, respectively) and significantly lower (P 〈 0.001) in the SAP group than in the SO group (0.156 ± 0.027 vs 1.000 ± 0.010 after 1 h; 0.113 ± 0.014 vs 1.041 ± 0.235 after 4 h; 0.069 ± 0.013 vs 1.110 ± 0.213 after 8 h, 0.122 ± 0.015 vs 1.000 ± 0.188 after 1 h; 0.076 ± 0.019 vs 0.899 ± 0.125 after 4 h; 0.045 ± 0.013 vs 0.991 ± 0.222 after 8 h, respectively). The mean pathologi- cal scores for pancreatic tissues in the MT group were significantly higher (P 〈 0.01) than those for samples in the SO group (1.088 ± 0.187 vs 0.488 ± 0.183 after 1 h, 2.450 ± 0.212 vs 0.469 ± 0.242 after 4 h; 4.994 ± 0.184 vs 0.513 ± 0.210 after 8 h), but were significantly lower (P 〈 0.01) than those for samples in the SAP group at each time point (1.088 ± 0.187 vs 1.969 ± 0.290 after 1 h; 2.450 ± 0.212 vs 3.344 ± 0.386 after 4 h; 4.994 ± 0.184 vs 6.981 ± 0.301 after 8 h). The severity of SAP increased significantly (P 〈 0.01) over time in the SAP group (1.088 ± 0.187 vs 2.450 ± 0.212 between 1 h and 4 h after inducing pancreatitis; and 2.450 ± 0.212 vs 4.994 ± 0.184 between 4 and 8 h after inducing pan- creatitis). CONCLUSION: Melatonin protects rats against acute pancreatitis-associated lung injury, probably through the upregulation of IL-22 and Th22, which increases the innate immunity of tissue cells and enhances their regeneration.
文摘BACKGROUND: Acute lung injury(ALI) is a common and serious complication of severe acute pancreatitis(SAP). The study aimed to investigate the protective effect and mechanism of phosphatidylinositol-3 kinase(PI3K) inhibitor Wortmannin in SAP associated with ALI.METHODS: Ninety rats were randomly divided into three groups: sham operation(SO) group(n=30), SAP group(n=30), and SAP+Wortmannin(SAP+W) group(n=30). SAP model was induced by retrograde injection of 4% sodium taurocholate into the biliopancreatic duct of rats. The rate of lung water content, myeloperoxidase(MPO), matrix metalloproteinase 9(MMP-9), protein kinase B(PKB), abdphosphorylation of protein kinase B(P-PKB) activity in the lung tissue were evaluated.RESULTS: In the SAP group, the p-PKB expression in the lung tissue began to rise at 3 hours after modeling, and peaked at 12 hours(P<0.05); the rate of lung water content, MPO and TNF-α activity were also gradually increased, and the degree of lung lesion gradually increased(P<0.05). In the SAP+Wortmannin group, the p-PKB expression in the lung tissue began to rise at 3 hours after modeling, and peaked at 12 hours; it was higher than that in the SO group(P<0.05), but significantly lower than that in the SAP group(P<0.05). The rest indicators in the SAP+Wortmannin group were also significantly decreased as compared with the SAP group(P<0.05).CONCLUSIONS: The expression of phosphatidylinositol-3 kinase/protein kinase B was elevated in severe pancreatitis rats with lung injury. This suggested that PI3 K signal transduction pathway is involved in the control and release of proinfl ammatory cytokines TNF-α, which may play an important role in the pathogenesis of severe acute pancreatitis associated with lung injury. This finding indicated that Wortmannin can block the PI3 K signal transduction pathway, and inhibit the release of infl ammatory factor TNF-α.
文摘BACKGROUND Acute lung injury(ALI)is a common and life-threatening complication of severe acute pancreatitis(SAP).There are currently limited effective treatment options for SAP and associated ALI.Calycosin(Cal),a bioactive constituent extracted from the medicinal herb Radix Astragali exhibits potent anti-inflammatory properties,but its effect on SAP and associated ALI has yet to be determined.AIM To identify the roles of Cal in SAP-ALI and the underlying mechanism.METHODS SAP was induced via two intraperitoneal injections of L-arg(4 g/kg)and Cal(25 or 50 mg/kg)were injected 1 h prior to the first L-arg challenge.Mice were sacrificed 72 h after the induction of SAP and associated ALI was examined histologically and biochemically.An in vitro model of lipopolysaccharide(LPS)-induced ALI was established using A549 cells.Immunofluorescence analysis and western blot were evaluated in cells.Molecular docking analyses were conducted to examine the interaction of Cal with HMGB1.RESULTS Cal treatment substantially reduced the serum amylase levels and alleviated histopathological injury associated with SAP and ALI.Neutrophil infiltration and lung tissue levels of neutrophil mediator myeloperoxidase were reduced in line with protective effects of Cal against ALI in SAP.Cal treatment also attenuated the serum levels and mRNA expression of pro-inflammatory cytokines tumor necrosis factor-α,interleukin-6,IL-1β,HMGB1 and chemokine(CXC motif)ligand 1 in lung tissue.Immunofluorescence and western blot analyses showed that Cal treatment markedly suppressed the expression of HMGB1 and phosphorylated nuclear factor-kappa B(NF-κB)p65 in lung tissues and an in vitro model of LPSinduced ALI in A549 cells suggesting a role for HGMB1 in the pathogenesis of ALI.Furthermore,molecular docking analysis provided evidence for the direct interaction of Cal with HGMB1.CONCLUSION Cal protects mice against L-arg-induced SAP and associated ALI by attenuating local and systemic neutrophil infiltration and inflammatory response via inhibition of HGMB1 and the NF-κB signaling pathway.
基金supported by the national "Tenth Five-year Plan" science and technology project (2001BA609A-19)
文摘Nickel carbonyl is a highly toxic metal compound produced from the reaction that occurs between nickel and carbon monoxide under pressure. As previously reported, nickel carbonyl can cause acute aspiration pneumonia, and animal experiments showed it was toxic to animal lung, liver, brain, and other vital organs[1]. However, few studies have investigated nickel carbonyl poisoning in humans.
基金supported mainly by Chinese traditionalmedicines and drugs administrative agent(92B093)
文摘Objective:To investigate the effect of salvia miltiorrhiza on expression of the MMP-2、9 and TIMP-1、TIMP-2 in tissue of acute lung injury of severe acute pancreatitis(SAP).Methods:MMP-2、9 expression and changes of the lung were measured after the SAP rats were induced by retrograde injection of 5%sodium tauocholate into hepatopancreatic duct.The changes of those parameters were also measured after salvia miltiorrhiza was injected intramuscularly just after induction of SAP.Results:The level of MMP-2、9 in pancreas and lung in SAP group were significantly higher than those in sham;The level of MMP-2、9 in salvia miltiorrhiza group were significantly lower than those in SAP group. Conclusion:MMP-2、9 were overexpressed in Acute lung injury (ALI) induced by SAP, salvia miltiorrhiza downregulates MMP-2、9 expression and decreased injury of lung tissue.
文摘Objective:To study the pathogenesis of acute lung injury in severe acute pancreatitis (SAP). Methods:Rats were sacrificed at 1, 3, 5, 6, 9 and 12 h after establishment of inducing model. Pancreas and lung tissues were obtained for pathological study, microvascular permeability and MPO examination. Gene expressions of TNF-α and ICAM-1 in pancreas and lung tissues were detected by RT-PCR. Results:After inducing SAP model, the injury degree of the pancreas and the lung increased gradually, accompanied with gradually increased MPO activity and microvascular permeability. Gene expressions of TNF-α and ICAM-1 in pancreas rose at 1 h and reached peak at 7 h. Relatively, their gene expressions in the lungs only rose slightly at 1 h and reached peak at 9-12 h gradually. Conclusion:There is an obvious time window between SAP and lung injury, when earlier protection is beneficial to prevent development of acute lung injury.
文摘Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in acute pancreatitis still represents a substantial problem,with a mortality rate in the range of 30%-40%.The present review evaluates underlying pathophysiological mechanisms in both ALI and ARDS and potential clinical implications.Several mediators and pathophysiological pathways are involved during the different phases of ALI and ARDS.The initial exudative phase is characterized by diffuse alveolar damage,microvascular injury and influx of inflammatory cells.This phase is followed by a fibro-proliferative phase with lung repair,type Ⅱ pneumocyte hypoplasia and proliferation of fibroblasts.Proteases derived from polymorphonuclear neutrophils,various pro-inflammatory mediators,and phospholipases are all involved,among others.Contributing factors that promote pancreatitis-associated ALI may be found in the gut and mesenteric lymphatics.There is a lack of complete understanding of the underlying mechanisms,and by improving our knowledge,novel tools for prevention and intervention may be developed,thus contributing to improved outcome.
基金supported by a grant from Technical Research and Development Fund of Shenzhen(No.JCYJ20140416122812032)
文摘This study aims to elucidate the mechanisms by which dexmedetomidine alleviates pulmonary edema in rats with acute lung injury induced by lipopolysaccharide (LPS). Male Wistar rats were randomly divided into five groups: normal saline control (NS) group, receiving intravenous 0.9% normal saline (5 mL/kg); LPS group, receiving intravenous LPS (10 mg/kg); small-dose dexmedetomidine (S) group, treated with a small dose of dexmedetomidine (0.5 μg·kg^-1·h^-1); medium-dose dexmedetomidine (M) group, treated with a medium dose of dexmedetomidine (2.5 μg·kg^-1·h^-1); high-dose dexmedetomidine (H) group, treated with a high dose of dexmedetomidine (5μg·kg^-1·h^-1). The rats were sacrificed 6 h after intravenous injection of LPS or NS, and the hmgs were removed for evaluating histological characteristics and determining the lung wet/dry weight ratio (W/D). The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) in the lung tissues were assessed by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein expression levels of aquaporin-1 (AQP1) and aquaporin-5 (AQP5) were detected by RT-PCR, immunohistochemistry, and Western blot- ting. The lung tissues from the LPS groups were significantly damaged, which were less pronounced in the H group but not in the small-dose dexmedetomidine group or medium-dose dexmedetomidine group. The W/D and the concentrations of TNF-α and IL-1β in the pulmonary tissues were increased in the LPS group as compared with those in NS group, which were reduced in the H group but not in S group or M group (P〈0.01). The expression of AQP1 and AQP5 was lower in the LPS group than in the NS group, and significantly increased in the H group but not in the S group or M group (P〈0.01). Our findings suggest that dexmedetomidine may alleviate pulmonary edema by increasing the expression of AQP-1 and AQP-5.