OBJECTIVE By analysis and evaluation of the perfusion images and perfusion parameters of the rabbits with VX2 lung tumor, the association between the perfusion parameters and tumor angiogenesis of patients with squamo...OBJECTIVE By analysis and evaluation of the perfusion images and perfusion parameters of the rabbits with VX2 lung tumor, the association between the perfusion parameters and tumor angiogenesis of patients with squamous cell carcinoma of the lung has been studied in order to establish a non-invasive and effective way to detect tumor blood supply, which is be able to exhibit hemodynamic data in tumors during cancer treatments. METHODS Fifteen Netherlands rabbits inoculated with VX2 lung tumor (rabbit group) and 25 patients with squamous cell carcinoma of the lung (patient group) received a multi-slice spiral CT perfusion imaging test using the Netherlands PHILIPS Brilliance 16-slice spiral CT and a U.S. MEDRAD binocular highpressure syringe. Image postprocessing was done using the special perfusion software and EBW 4.0 Workstation. Perfusion volume (PV), peak enhanced increment (PEI), transit time peak (TTP), and blood volume (BV) were measured and analyzed. RESULTS In the rabbit group, the values of the PV, PEI, TTP, and BV of the tumor margin were (53.89 ± 13.38) mL/(min.mL), (45.71 ± 15.52) Hu, (39.29 ± 10.10) sec, and (31.45 ± 18.19) mL/100 g, respectively; these values of the tumor center were (36.57 ± 14.17) mL/(min.mL), (28.64 ± 11.74) Hu, (39.00 + 9.78) sec, and (19.76 ± 13.95) mL/100 g, respectively; the values of the muscles were (12.45± 4.38) mL/(min.mL), (10.98 ± 5.03) Hu, (38.86 ± 10.04) sec, and (5.38 ±2.87) mL/100 g, respectively. The values of the relative perfusion volume (RPV), relative peak enhanced increment (RPEI), and relative blood volume (RBV) of the tumor margin were 4.38 ± 1.45, 3.96± 1.45, 9.99 ± 11.7, respectively; these values of the tumor center were 2.14 ± 1.08, 1.83±1.45, 4.17 ±3.39, respectively. The values of the PV, PEL BV of the tumor margin vs. the values of the muscles developed t-values, which were 15.028, 10.79, and 5.88, respectively (P ≤ 0.01), with statistical significance; the values of the PV, PEI, BV of the tumor center vs. the values of the muscles produced t-values, which were 8.67, 7.49, and 4.55, respectively (P 〈 0.01), with statistical significance. The values of the TTP of the tumor margin vs. TTP values of the muscles, and the TTP values of the tumor center vs. TTP values of the muscles developed t-values, which were 1.7 and 0.806, respectively (P ≥ 0.05), without statistical significance. In the patient group, the values of the PV, PE, TTP, and BV of the tumor margin were (88.95 ± 30.89) mL/(min.mL), (61.87 ± 27.31) Hu, (37.72 ± 12.53) sec, and (18.38 ± 7.2) mL/100 g, respectively; these values of the tumor center were (39.77 ± 18.29) mL/(min.mL), (14.57 ± 8.1) Hu, (35.64 ± 12.41) sec, and (11.22 ± 6.02) mL/100 g, respectively; these values of the muscles were (12.45 ± 6.5) mL/(min.mL), (6.14 ± 2.66) Hu, (35.68± 12.35) sec, and (2.23 ± 1.11) mL/100 g, respectively. The values of the RPV, RPEI, and RBV of the tumor margin were 8.05 ± 5.04, 8.87 ± 4.32, and 12.16 ± 8.49, respectively; these values of the tumor center were 2.39 ± 1.68, 2.97 ± 2.1, 3.53 ± 2.82, respectively. The values of the PV, PEI, BV of the tumor margin in the patient group vs. the values of the muscles produced t-values, which were 13.8, 10.85, and 12.22, respectively (P 〈 0.01), with significant differences; these values of the tumor center vs. the values of the muscles developed t-values, which were 9.158, 6.26, 8.654, respectively (P 〈 0.01), with significant differences. The TTP value of the tumor margin vs. that of the muscles produced t-value, which was 0.371, and the TTP value of the tumor center vs. that of the muscles developed t-value, which was 1 (P 〉 0.05), without statistical difference. CONCLUSION CT perfusion imaging technics demonstrates directly dynamic changes of blood flow to tumors, which assists in identifying tumor growth and necrosis, therefore, this research provides an evidence-based guidelines for the treatment of human lung squamous cell carcinoma and has far-reaching clinical significance.展开更多
Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell carcinoma and small cell carcinoma are the main histological subtypes and constitutes around 85% and 15% of all lung cancer respec...Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell carcinoma and small cell carcinoma are the main histological subtypes and constitutes around 85% and 15% of all lung cancer respectively. Multimodality treatment plays a key role in the successful management of lung cancer depending upon the histological subtype, stage of disease, and performance status. Imaging modalities play an important role in the diagnosis and accurate staging of the disease, in assessing the response to neoadjuvant therapy, and in the follow-up of the patients. Last decade has witnessed voluminous upsurge in the use of positron emission tomography-computed tomography(PET-CT); role of PET-CT has widened exponentially in the management of lung cancer. The present article reviews the role of 18-fluoro-deoxyglucose PET-CT in the management of non small cell lung cancer with emphasis on staging of the disease and the assessment of response to neoadjuvant therapy based on available literature.展开更多
文摘OBJECTIVE By analysis and evaluation of the perfusion images and perfusion parameters of the rabbits with VX2 lung tumor, the association between the perfusion parameters and tumor angiogenesis of patients with squamous cell carcinoma of the lung has been studied in order to establish a non-invasive and effective way to detect tumor blood supply, which is be able to exhibit hemodynamic data in tumors during cancer treatments. METHODS Fifteen Netherlands rabbits inoculated with VX2 lung tumor (rabbit group) and 25 patients with squamous cell carcinoma of the lung (patient group) received a multi-slice spiral CT perfusion imaging test using the Netherlands PHILIPS Brilliance 16-slice spiral CT and a U.S. MEDRAD binocular highpressure syringe. Image postprocessing was done using the special perfusion software and EBW 4.0 Workstation. Perfusion volume (PV), peak enhanced increment (PEI), transit time peak (TTP), and blood volume (BV) were measured and analyzed. RESULTS In the rabbit group, the values of the PV, PEI, TTP, and BV of the tumor margin were (53.89 ± 13.38) mL/(min.mL), (45.71 ± 15.52) Hu, (39.29 ± 10.10) sec, and (31.45 ± 18.19) mL/100 g, respectively; these values of the tumor center were (36.57 ± 14.17) mL/(min.mL), (28.64 ± 11.74) Hu, (39.00 + 9.78) sec, and (19.76 ± 13.95) mL/100 g, respectively; the values of the muscles were (12.45± 4.38) mL/(min.mL), (10.98 ± 5.03) Hu, (38.86 ± 10.04) sec, and (5.38 ±2.87) mL/100 g, respectively. The values of the relative perfusion volume (RPV), relative peak enhanced increment (RPEI), and relative blood volume (RBV) of the tumor margin were 4.38 ± 1.45, 3.96± 1.45, 9.99 ± 11.7, respectively; these values of the tumor center were 2.14 ± 1.08, 1.83±1.45, 4.17 ±3.39, respectively. The values of the PV, PEL BV of the tumor margin vs. the values of the muscles developed t-values, which were 15.028, 10.79, and 5.88, respectively (P ≤ 0.01), with statistical significance; the values of the PV, PEI, BV of the tumor center vs. the values of the muscles produced t-values, which were 8.67, 7.49, and 4.55, respectively (P 〈 0.01), with statistical significance. The values of the TTP of the tumor margin vs. TTP values of the muscles, and the TTP values of the tumor center vs. TTP values of the muscles developed t-values, which were 1.7 and 0.806, respectively (P ≥ 0.05), without statistical significance. In the patient group, the values of the PV, PE, TTP, and BV of the tumor margin were (88.95 ± 30.89) mL/(min.mL), (61.87 ± 27.31) Hu, (37.72 ± 12.53) sec, and (18.38 ± 7.2) mL/100 g, respectively; these values of the tumor center were (39.77 ± 18.29) mL/(min.mL), (14.57 ± 8.1) Hu, (35.64 ± 12.41) sec, and (11.22 ± 6.02) mL/100 g, respectively; these values of the muscles were (12.45 ± 6.5) mL/(min.mL), (6.14 ± 2.66) Hu, (35.68± 12.35) sec, and (2.23 ± 1.11) mL/100 g, respectively. The values of the RPV, RPEI, and RBV of the tumor margin were 8.05 ± 5.04, 8.87 ± 4.32, and 12.16 ± 8.49, respectively; these values of the tumor center were 2.39 ± 1.68, 2.97 ± 2.1, 3.53 ± 2.82, respectively. The values of the PV, PEI, BV of the tumor margin in the patient group vs. the values of the muscles produced t-values, which were 13.8, 10.85, and 12.22, respectively (P 〈 0.01), with significant differences; these values of the tumor center vs. the values of the muscles developed t-values, which were 9.158, 6.26, 8.654, respectively (P 〈 0.01), with significant differences. The TTP value of the tumor margin vs. that of the muscles produced t-value, which was 0.371, and the TTP value of the tumor center vs. that of the muscles developed t-value, which was 1 (P 〉 0.05), without statistical difference. CONCLUSION CT perfusion imaging technics demonstrates directly dynamic changes of blood flow to tumors, which assists in identifying tumor growth and necrosis, therefore, this research provides an evidence-based guidelines for the treatment of human lung squamous cell carcinoma and has far-reaching clinical significance.
文摘Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell carcinoma and small cell carcinoma are the main histological subtypes and constitutes around 85% and 15% of all lung cancer respectively. Multimodality treatment plays a key role in the successful management of lung cancer depending upon the histological subtype, stage of disease, and performance status. Imaging modalities play an important role in the diagnosis and accurate staging of the disease, in assessing the response to neoadjuvant therapy, and in the follow-up of the patients. Last decade has witnessed voluminous upsurge in the use of positron emission tomography-computed tomography(PET-CT); role of PET-CT has widened exponentially in the management of lung cancer. The present article reviews the role of 18-fluoro-deoxyglucose PET-CT in the management of non small cell lung cancer with emphasis on staging of the disease and the assessment of response to neoadjuvant therapy based on available literature.
文摘目的探讨表观扩散系数(apparent diffusion coefficient,ADC)鉴别诊断肺癌脑转移瘤组织学分型的价值及其与Ki-67增殖指数之间的关系。材料与方法回顾性分析经手术病理证实的20例小细胞肺癌脑转移瘤和41例非小细胞肺癌脑转移瘤患者的资料,并测定其Ki-67增殖指数。在ADC图上测量肿瘤实性部分的最小ADC值(the minimum ADC,ADCmin)、平均ADC值(the mean ADC,ADCmean)及对侧正常脑白质ADC值,并计算相对ADCmin(relative ADCmin,rADCmin)及相对ADCmean(relative ADCmean,rADCmean)。对比分析二者ADC值的差异,绘制受试者工作特征(receiver operating characteristic,ROC)曲线评价ADC值的鉴别诊断价值,并计算ADC值与Ki-67增殖指数之间的相关性。结果小细胞肺癌脑转移瘤组的ADCmin、ADCmean、rADCmin及rADCmean值均小于非小细胞肺癌脑转移瘤组,组间差异均具有统计学意义(P<0.05)。各ADC值均能对小细胞肺癌脑转移瘤及非小细胞肺癌脑转移瘤进行有效鉴别,其中rADCmean值的鉴别诊断效能最好,曲线下面积(area under the curve,AUC)为0.950[95%置信区间(confidence interval,CI):0.907~0.994],最佳截断值为0.955,相应的敏感度和特异度分别为96.23%、83.87%,准确度为91.67%。小细胞肺癌脑转移瘤组的Ki-67增殖指数大于非小细胞肺癌脑转移瘤组,组间差异具有统计学意义(P<0.05)。61例肺癌脑转移瘤患者的ADCmin、ADCmean、rADCmin及rADCmean值均与Ki-67增殖指数呈不同程度的负相关(r=-0.506、r=-0.480、r=-0.569、r=-0.541)。结论ADC值可以对肺癌脑转移瘤的组织学分型进行鉴别诊断,并可以预测Ki-67增殖指数的表达水平。