期刊文献+
共找到196篇文章
< 1 2 10 >
每页显示 20 50 100
In-situ Moissanite in Dunite: Deep Mantle Origin of Mantle Peridotite in Luobusa Ophiolite, Tibet 被引量:5
1
作者 LIANG Fenghua XU Zhiqin ZHAO Jianan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第2期517-529,共13页
We report the discovery of an in-situ natural moissanite as an inclusion in the Cr-spinel from the dunite envelope of a chromitite deposit in Luobusa ophiolite,Tibet.The moissanite occurs as a twin crystal interpenetr... We report the discovery of an in-situ natural moissanite as an inclusion in the Cr-spinel from the dunite envelope of a chromitite deposit in Luobusa ophiolite,Tibet.The moissanite occurs as a twin crystal interpenetrated by two quadrilateral signal crystals with sizes of 17 pm × 10 μm and 20 μm × 7 μm,respectively.The moissanite is green with parallel extinction.The absorption peaks in its Raman spectra are at 967-971 cm-1,787-788 cm-1,and 766 cm-1.The absorption peaks in the infrared spectra are at 696 cm-1,767 cm-1,1450 cm-1,and 1551 cm-1,which are distinctly different from the peaks for synthetic silicon carbide.Moissanites have been documented to form in ultra-high pressure,high temperature,and extremely low fO2 environments and their 13C-depleted compositions indicate a lower mantle origin.Combined with previous studies about other ultra-high pressure and highly reduced minerals in Luobusa ophiolite,the in-situ natural moissanite we found indicates a deep mantle origin of some materials in the mantle sequence of Luobusa ophiolite.Further,we proposed a transformation model to explain the transfer process of UHP materials from the deep mantle to ophiolite sequence and then to the supra-subduction zone environment.Interactions between the crown of the mantle plume and mid-ocean ridge are suggested to be the dominant mechanism. 展开更多
关键词 moissanite deep mantle origin mantle peridotite luobusa ophiolite tibet
下载PDF
Exsolutions of Diopside and Magnetite in Olivine from Mantle Dunite,Luobusa Ophiolite,Tibet,China 被引量:8
2
作者 REN Yufeng CHEN Fangyuan YANG Jingsui GAO Yuanhong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第2期377-384,共8页
The exsolutious of diopside and magnetite occur as intergrowth and orient within olivine from the mantle dunite, Luobusa ophiolite, Tibet. The dunite is very fresh with a mineral assemblage of olivine (〉95%) + chr... The exsolutious of diopside and magnetite occur as intergrowth and orient within olivine from the mantle dunite, Luobusa ophiolite, Tibet. The dunite is very fresh with a mineral assemblage of olivine (〉95%) + chromite (1%-4%) + diopside (〈1%). Two types of olivine are found in thin sections: one (Fo = 94) is coarse-grained, elongated with development of kink bands, wavy extinction and irregular margins; and the other (Fo = 96) is fine-grained and poly-angied. Some of the olivine grains contain minor Ca, Cr and Ni. Besides the exsolutions in olivine, three micron-size inclusions are also discovered. Analyzed through energy dispersive system (EDS) with unitary analytical method, the average compositions of the inclusions are: Na20, 3.12%-3.84%; MgO, 19.51%-23.79%; Al2O3, 9.33%-11.31%; SiO2, 44.89%-46.29%; CaO, 11.46%-12.90%; Cr2O3, 0.74%-2.29%; FeO, 4.26%- 5.27%, which is quite similar to those of amphibole. Diopside is anhedral f'dling between olivines, or as micro-inclusions oriented in olivines. Chromite appears euhedral distributed between olivines, sometimes with apparent compositional zone. From core to rim of the chromite, Fe content increases and Cr decreases; and A! and Mg drop greatly on the rim. There is always incomplete magnetite zone around the chromite. Compared with the nodular chromite in the same section, the euhedral chromite has higher Fe3O4 and lower MgCr2O4 and MgAI2O4 end member contents, which means it formed under higher oxygen fugacity environment. With a geothermometer estimation, the equilibrium crystalline temperature is 820℃-960℃ for olivine and nodular chromite, 630℃-770℃ for olivine and euhedral chromite, and 350℃-550℃ for olivine and exsoluted magnetite, showing that the exsolutions occurred late at low temperature. Thus we propose that previously depleted mantle harzburgite reacted with the melt containing Na, Al and Ca, and produced an olivine solid solution added with Na^+, Al^3+, Ca^2+, Fe^3+, Cr^3+. With temperature decreasing, the olivine solid solution decomposed; and Fe^3+, Cr^3+ diffused into magnetite and Ca^2+ and Na^+ into clinopyroxene, both of which formed intergrowth textures. A few Fe^3+ and Cr^3+ entered interstitial chromite. Through later tectonism, the peridotite recrystallized and formed deformational coarse grained olivine, fine grained and poly-angled olivine, and euhedral grained chromite. Due to the fast cooling rate of the rock or rapid tectonic emplacement, the exsolution textures in olivine and compositional zones of chromite are preserved. 展开更多
关键词 DIOPSIDE MAGNETITE exsolution OLIVINE DUNITE ophiolite luobusa tibet
下载PDF
Origin of the Zedang and Luobusa Ophiolites, Tibet 被引量:5
3
作者 BAO Peisheng SU Li +1 位作者 WANG Jun ZHAI Qingguo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第2期669-698,共30页
The Zedang and Luobusa ophiolites are located in the eastern section of the Yalung Zangbo ophiolite belt,and they share similar geological tectonic setting and age.Thus,an understanding of their origins is very import... The Zedang and Luobusa ophiolites are located in the eastern section of the Yalung Zangbo ophiolite belt,and they share similar geological tectonic setting and age.Thus,an understanding of their origins is very important for discussion of the evolution of the Eastern Tethys Ocean.There is no complete ophiolite assemblage in the Zedang ophiolite.The Zedang ophiolite is mainly composed of mantle peridotite and a suite of volcanic rocks as well as siliceous rocks,with some blocks of olivinepyroxenite.The mantle peridotite mainly consists of Cpx-harzburgite,harzburgite,some lherzolite,and some dunite.A suite of volcanic rocks is mainly composed of caic-aikaline pyroclastic rocks and secondly of tholeiitic pillow lavas,basaltic andesites,and some boninitic rocks with a lower TiO2 content (TiO2 < 0.6%).The pyroclastic rocks have a LREE-enriched REE pattern and a LILE-enriched (compared to HFSE) spider diagram,demonstrating an island-arc origin.The tholeiitic volcanic rock has a LREE-depleted REE pattern and a LILE-depleted (compared to HFSE) spider diagram,indicative of an origin from MORB.The boninitic rock was generated from fore-arc extension.The Luobusa ophiolite consists of mantle peridotite and mafic-ultramaflc cumulate units,without dike swarms and volcanic rocks.The mantle peridotite mainly consists of dunite,harzburgite with low-Opx (Opx < 25%),and harzburgite (Opx > 25%),which can be divided into two facies belts.The upper is a dunite-harzburgite (Opx < 25%) belt,containing many dunite lenses and a large-scale chromite deposit with high Cr203; the lower is a harzburgite (Opx >25%) belt with small amounts of dunite and lherzolite.The Luobusa mantle peridotite exhibits a distinctive vertical zonation of partial melting with high melting in the upper unit and low melting in the lower.Many mantle peridotites are highly depleted,with a characteristic U-shaped REE pattern peculiar to fore-arc peridotite.The Luobusa cumulates are composed of wehrlite and olivine-pyroxenite,of the P-P-G ophiolite series.This study indicates that the Luobusa ophiolite was formed in a fore-arc basin environment on the basis of the occurrence of highly depleted mantle peridotite,a high-Cr2O3 chromite deposit,and cumulates of the P-P-G ophiolite series.We conclude that the evolution of the Eastern Tethys Ocean involved three stages:the initial ocean stage (formation of MORB volcanic rock and dikes),the forearc extension stage (formation of high-Cr203 chromite deposits and P-P-G cumulates),and the islandarc stage (formation of caic-alkaline pyroclastic rocks). 展开更多
关键词 Zedang ophiolite luobusa ophiolite MORB island arc fore-arc extension subduction initiation
下载PDF
Zircon U-Pb Geochronological Constraints on Rapid Exhumation of the Mantle Peridotite of the Xigaze Ophiolite, Southern Xizang(Tibet) 被引量:14
4
作者 LIU Tong WU Fuyuan +5 位作者 ZHANG Liangliang ZHAI Qingguo LIU Chuanzhou JI Wenbin Ji ZHANG Chang XUYang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期222-223,共2页
The Xigaze ophiolite crops out in the central segment of the Yarlung Zangbo suture zone,southern Tibet(Fig.1).It is characterized by large amounts of ultramafic units with minor mafic rocks.The mafic rocks consist of ... The Xigaze ophiolite crops out in the central segment of the Yarlung Zangbo suture zone,southern Tibet(Fig.1).It is characterized by large amounts of ultramafic units with minor mafic rocks.The mafic rocks consist of gabbros, 展开更多
关键词 tibet Zircon U-Pb Geochronological Constraints on Rapid Exhumation of the Mantle Peridotite of the Xigaze ophiolite Pb Southern Xizang
下载PDF
Petrology and Geochemistry of the Dangqiong Ophiolite,Western Yarlung-Zangbo Suture Zone,Tibet,China 被引量:1
5
作者 XU Xiangzhen YANG Jingsui +1 位作者 XIONG Fahui GUO Guolin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第2期344-361,共18页
The Dangqiong ophiolite, the largest in the western segment of the Yarlung-Zangbo Suture Zone(YZSZ)ophiolite belt in southern Tibet, consists of discontinuous mantle peridotite and intrusive mafic rocks. The former is... The Dangqiong ophiolite, the largest in the western segment of the Yarlung-Zangbo Suture Zone(YZSZ)ophiolite belt in southern Tibet, consists of discontinuous mantle peridotite and intrusive mafic rocks. The former is composed dominantly of harzburgite, with minor dunite, locally lherzolite and some dunite containing lenses and veins of chromitite. The latter, mafic dykes(gabbro and diabase dykes), occur mainly in the southern part. This study carried out geochemical analysis on both rocks. The results show that the mantle peridotite has Fo values in olivine from 89.92 to 91.63 and is characterized by low aluminum contents(1.5–4.66 wt%) and high Mg# values(91.06–94.53) of clinopyroxene. Most spinels in the Dangqiong peridotites have typical Mg# values ranging from 61.07 to 72.52, with corresponding Cr# values ranging from 17.67 to 31.66, and have TiO2 contents from 0 to 0.09%, indicating only a low degree of partial melting(10–15%). The olivine-spinel equilibrium and spinel chemistry of the Dangqiong peridotites suggest that they originated deeper mantle(>20 kbar). The gabbro dykes show N-MORB-type patterns of REE and trace elements. The presence of amphibole in the Dangqiong gabbro suggests the late-stage alteration of subduction-derived fluids. All the lherzolites and harzburgites in Dangqiong have similar distribution patterns of REE and trace elements, the mineral chemistry in the harzburgites and lherzolites indicates compositions similar to those of abyssal and forearc peridotites, suggesting that the ophiolite in Dangqiong formed in a MOR environment and then was modified by late-stage melts and fluids in a suprasubduction zone(SSZ) setting. This formation process is consistent with that of the Luobusa ophiolite in the eastern Yarlung-Zangbo Suture Zone and Purang ophiolite in the western Yarlung-Zangbo Suture Zone. 展开更多
关键词 GABBRO mantle PERIDOTITE Dangqiong ophiolite Yarlung-Zangbo SUTURE Zone tibet
下载PDF
Lower Cretaceous turbidites in the Shiquanhe–Namco Ophiolite Mélange Zone, Asa area, Tibet: Constraints on the evolution of the Meso-Tethys Ocean 被引量:4
6
作者 Xiao-Wen Zeng Ming Wang +3 位作者 Cai Li Hang Li Xian-Jin Zeng Di Shen 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第4期1-20,共20页
Turbidites fromthe Shiquanhe–Namco OphioliteMélange Zone(SNMZ)record critical information about the tectonic affinity of the SNMZand the evolutionary history of theMeso-Tethys Ocean in Tibet.This paper reports s... Turbidites fromthe Shiquanhe–Namco OphioliteMélange Zone(SNMZ)record critical information about the tectonic affinity of the SNMZand the evolutionary history of theMeso-Tethys Ocean in Tibet.This paper reports sedimentologic,sandstone petrographic,zircon U-Pb geochronologic,and clastic rocks geochemical data of newly identified turbidites(Asa Formation)in the Asa Ophiolite Mélange.The youngest ages of detrital zircon from the turbiditic sandstone samples,together with~115 Ma U-Pb concordant age from the tuff intercalation within the Asa Formation indicate an Early Cretaceous age.The sandstone mineral modal composition data show that the main component is quartz grains and the minor components are sedimentary and volcanic fragments,suggesting that the turbidites were mainly derived froma recycled orogen provenancewith a minor addition of volcanic arc materials.The detrital U-Pb zircon ages of turbiditic sandstones yield main age populations of 170–120 Ma,300–220 Ma,600–500 Ma,1000–700 Ma,1900–1500 Ma,and~2500 Ma,similar to the ages of the Qiangtang Terrane(age peak of 600–500 Ma,1000–900 Ma,~1850 Ma and~2500 Ma)and the accretionary complex in the Bangong–Nujiang Ophiolite Zone(BNMZ)rather than the age of the Central Lhasa Terrane(age peak of~300 Ma,~550 Ma and~1150 Ma).The mineral modal compositions,detrital U-Pb zircon ages,and geochemical data of clastic rocks suggest that the Asa Formation is composed of sediments primarily recycled from the Jurassic accretionary complex within the BNMZ with the secondary addition of intermediate-felsic island arc materials from the South Qiangtang Terrane.Based on our new results and previous studies,we infer that the SNMZ represents a part of the Meso-Tethys Suture Zone,rather than a southward tectonic klippe of the BNMZ or an isolated ophiolitic mélange zone within the Lhasa Terrane.The Meso-Tethys Suture Zone records the continuous evolutionary history of the northward subduction,accretion,arc-Lhasa collision,and Lhasa-Qiangtang collision of the Meso-Tethys Ocean from the Early Jurassic to the Early Cretaceous. 展开更多
关键词 tibet Shiquanhe–Namco ophiolite Mélange Zone Early Cretaceous Sedimentary provenance Tectonic Affinity Meso-Tethys Ocean
下载PDF
Thermodynamic modeling and elemental migration for the early stage of rodingitization:An example from the Xialu massif of the Xigaze ophiolite,southern Tibet 被引量:1
7
作者 Wen-Yong Duan Xu-Ping Li +3 位作者 Ze-Li Wang Shuang Chen Guang-Ming Sun Ling-Quan Zhao 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期557-576,共20页
The analysis of early stage rodingite from the ultramafic rocks of the Xialu Massif in the Xigaze Ophiolite,Tibet,in China shows that the rodingitization involved continuous changes in fluid composition during differe... The analysis of early stage rodingite from the ultramafic rocks of the Xialu Massif in the Xigaze Ophiolite,Tibet,in China shows that the rodingitization involved continuous changes in fluid composition during different stages of subduction.The early stage prehnite-bearing rodingite was produced at low pressures and temperatures along extensional fractures.Samples of rodingite were collected along a profile from the center to the margin of a rodingitized intrusive igneous rock(^10 m×30 m),and they record wide variations in bulk composition,mineralogy,and texture.The mineral assemblages,from center to margin,vary from(1)relics of primary clinopyroxene(Cpx_(r))and primary amphibole(Amp_(r))+newly formed late amphibole(Act)+primary plagioclase(Pl_(r))+clinozoisite+prehnite+albite+chlorite+titanite+ilmenite(R1 rodingite),through(2)relics of primary clinopyroxene(Cpx_(r))+newly formed late clinopyroxene(Cpx_(n))+primary and late amphiboles(Amp_(r)+Act)+clinozoisite+prehnite+albite+chlorite+titanite(R2 rodingite),to(3)newly formed late clinopyroxene(Cpx_(n))and amphibole(Act)+clinozoisite+prehnite+albite+chlorite+titanite(R3 rodingite).As a result of the metasomatic process of rodingitization,the content of CaO in the whole rock chemical composition from R1 to R3 increases,SiO_(2) decreases,and Na_(2)O+K_(2)O is almost completely removed.Massbalance diagrams show enrichments in large ion lithophile elements such as Rb,Cs,Ba,and Pb as well as Ni during rodingitization.The central part of the rodingitized intrusion(R1 rodingite)was only slightly affected by metasomatism.On the other hand,the contents of the rare earth elements(REEs),high field strength elements(HFSEs;e.g.Zr,Nb,Ta,Hf,and Y),and some highly compatible elements such as Cr and Sc decreased slightly during rodingitization.Thermodynamic modeling based on equilibrium mineral assemblages indicates that the rodingite of the Xialu Massif formed in an H_(2)O-saturated,CO_(2)-rich environment.The estimated conditions of metamorphism were-281-323℃and 0.4-3.9 kbar,representing the subgreenschist facies.In this environment,REEs and HFSEs were soluble in the fluids and partly removed.Moreover,these prehnite rodingites formed in a progressively reducing and less alkaline environment,as indicated by decreases in f(O_(2))and bulk-rock Fe^(3+)/Fe^(2+) ratios,and the records of fluidΔpH from the center to the margin of the studied rodingitized intrusion. 展开更多
关键词 Early stage rodingitization Element migration Thermodynamic modeling Xialu Massif Xigaze ophiolite Southern tibet
下载PDF
Tectonic Evolution of the Dongbo Ophiolite in Western Yarlung Zangbo Suture Zone, Xizang(Tibet)
8
作者 LIU Fei YANG Jingsui +6 位作者 Yildirim DILEK LIAN Dongyang XU Zhiqin ZHANG Li XIE Yanxue CHEN Songyong HUANG Jian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期221-,共1页
The Dongbo ophiolite in the western part of the Yarlung-Zangbo suture zone in southern Tibet rests tectonically on the middle-late Triassic and Cretaceous flysch units,and consist mainly of peridotites,mafic dikes,
关键词 tibet Tectonic Evolution of the Dongbo ophiolite in Western Yarlung Zangbo Suture Zone Xizang
下载PDF
Geochronology and Geochemistry of the Magmatic Rocks from Zedong Ophiolite, Eastern Yarlung-Zangbo Suture Zone, Tibet
9
作者 XIONG Fahui YANG Jingsui +4 位作者 Paul T.ROBINSON GAO Jian ZHANG Lan CHEN Yanhong LAI Shengming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期45-,共1页
The Yarlung Zangbo suture zone extends more than2000 km along southern Tibet and marks the boundary between the Indian subcontinent and Eurasia.The Zedong terrane has been not suggested to represent the vestige of suc... The Yarlung Zangbo suture zone extends more than2000 km along southern Tibet and marks the boundary between the Indian subcontinent and Eurasia.The Zedong terrane has been not suggested to represent the vestige of such an intra-oceanic arc developed within the Neo-Tethys Ocean,as a result of the northward subduction of the Neo-Tethys Ocean during the Late Jurassic.In this study,we present detailed geochemical and geochronological data of various types of magmatic rocks widely exposed in the Zedong terrane to constrain the formation age and tectonic setting of the Zedong terrane.We found that the Zedong volcanic rocks belong to high K2O calc-alkaline series,whereas the diabase and gabbro plotted in the low-K calcalkline.The basalt rocks are highly enriched in LREE and LILE,but strongly depleted in HFSE,indicating they were derived from a metasomatized mantle.Both gabbros and diabase have similar N-MORB geochemistry indicates that the cumulates were produced from MOR setting.Zircons from four samples,including the basalt rocks(158-161Ma)are older than the gabbro(131 Ma),certificate the gabbro are as the vein intrude into the basalt rocks.This suggests that the volcanic eruption and plutonic emplacement were coevally developed in the Zedonghave similar positiveεHf(t)values(+2.0 to+15.6)and(+8.6 to+18.4),indicating they were stemmed from similarly depleted mantle sources,same with the gabbro and granitic rocks from the Gangdese arc.Therefore,we proposed that the basalt rocks in the Zedong terrane were formed through partial melting of the mantle wedge metasomatized by slab-released fluids/melts.A part of hydrous basalts were underplated in the thickened lower crust beneath the Zedong terrane,which gave rise to the cumulate and granitic rocks.This suggests that the Zedong terrane represents a slice of the active continental margin developed on the southern margin of the Lhasa terrane as a result of the northward subduction of the Neo-Tethys Ocean during the Late Jurassic,although a possible intra-oceanic arc setting cannot be excluded. 展开更多
关键词 tibet Geochronology and Geochemistry of the Magmatic Rocks from Zedong ophiolite Eastern Yarlung-Zangbo Suture Zone
下载PDF
Comparison of Different-sized Chromite Mineralizations in the Yarlung-Zangbo Ophiolite Belt, Southern Tibet
10
作者 ZHU Xiangkun SHE Yuwei +2 位作者 HE Yuan MA Jianxiong SUN Jian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期56-57,共2页
Podiform chromitites are characteristically occurred in ophiolites(e.g.,Thayer,1964;Dickey,1975).However,the metallogenic processes for podiform chromitites are still unclear.Early models involved fractional crystalli... Podiform chromitites are characteristically occurred in ophiolites(e.g.,Thayer,1964;Dickey,1975).However,the metallogenic processes for podiform chromitites are still unclear.Early models involved fractional crystallization and crystal settling from picritic or basaltic melts in magma chambers(Dickey,1975;Boudier and Coleman,1981),but it was also proposed that podiform chromitites formed from partial melting and melt extraction in host mantle peridotites(Dick,1977;Dick and Bullen,1984).Recent studies by the majority of authors have suggested that melt-rock interaction at the Moho transition zone may have played a key role in the formation of podiform chromitites(Zhou and Robinson,1994;Zhou et al.,1996,2005,2014;Robinson,2008;Page and Barnes,2009;Uysal et al.,2009,2012;González-Jiménez et al.,2011,2015).Based on the occurrence of some ultrahigh pressure minerals(e.g.diamond and coesite)in chromitites,it has been proposed recently that the formation of podiform chromitite is likely related to multiple processes inclusing mantle recycling(Yang et al.,2007;Yamamoto et al.,2013).Although geat progresses have been made towards understanding the genesis of podiform chromitites,some fundamental issues in remain unanswered.For examples,what are the major controls on the size of chromitites?And why some ophiolites contain large podiform chromitite bodies,whereas most ophiolitic massifs are essentially chromitite-barren? The Yarlung-Zangbo Ophiolite belt is one of the most famous ophiolite zone in the world.It contains fresh peridotites as well as different-sided podiform chromitites.The Luobusha ophiolite in the eastern segment of the belt hosts the largest chromite deposit in China.In the central and western segments of belt the Dazhuqu and Dongbo ophiolitic massifs contain some small-scale chromitite bodies.Such characteristics make the Yarlung-Zangbo Ophiolites an ideal subject to investigate the major controls on the metallogenesis of podiform chromitites. The Luobusha chromitites are large lens and enclosed in dunite.In contrast,the Dazhuqu and Dongbo chromitites display generally as narrow dykes or irregular seams with dunite envelopes.The closely spatial association of the chromitites and dunite envelopes,together with their textural features,support a petrogenetic model that the chromitites from the Luobusha,Dazhuqu and Dongbo massifs form from reaction of melt with host peridotite.In terms of chemical composition of chromite,there are distinctive differences between those from the Luobusha and the Dazhuqu or the Dongbo.Chromite from the Luobusha chromitites has high Cr#(71-82),whereas Chromite in the Dazhuqu chromitites show relatively low Cr#(16-63),and chromite in the Dongbo chromitites includes low Cr#(11-47)and high Cr#(70-81)types.For the Dongbo and Dazhuqu massifs,linear trends of Cr#with Mg O,Fe Ot,Ni,Ga,V and Sc in chromite from the chromitites and dunites of are similar to those of the host peridotites,suggesting that the melt-rock reaction may provide major budget of Cr for the chromitites.The similar compositions at a given Cr#in chromite from these rocks also demonstrate that the chromitites may have been formed by in-situ crystallization of chromite under low melt/rock ratio.In contrast,the Luobusha chromitites have different trends of compositions in chromite from that of the host peridotites,implying that the formation of the chromitite bodies requires a continual replenishment of Cr-rich melts from deeper mantle.Fractionation and accumulation of chromite from a large volume of Cr-rich melt may play an important role on the formation of the Luobusha chromitites.MORB-normalized trace element patterns of chromite from the Luobusha chromitites suggest that it has been formed from Cr-rich boninitic melt at surpra-subduction zone(SSZ)setting.However,the Dongbo and Dazhuqu chromitites have formed originally from a MORB-affinity melt at a mid-ocean ridge(MOR)environment. In summary,the Luobusha chromitites crystallized from a Cr-rich melt in a dynamic conduit,where fractional crystallization and crystal settling play a key role in formation of the large chromitites.In contrast,the small-scale mineralizations of the Dongbo and Dazhuqu chromitite pods are formed from in situ produced melts.Podiform chromitites can be formed in MOR environment,whereas the higher Cr content in boninitic melt and assimilation of subducted slab materials at SSZ setting may benefit the formation of large chromite deposit. 展开更多
关键词 Comparison of Different-sized Chromite Mineralizations in the Yarlung-Zangbo ophiolite Belt Southern tibet
下载PDF
Unusual Mantle Mineral Group from Chromitite Orebody Cr-11 in Luobusa Ophiolite of Yarlung-Zangbo Suture Zone, Tibet 被引量:21
11
作者 徐向珍 杨经绥 +3 位作者 陈松永 方青松 白文吉 巴登珠 《Journal of China University of Geosciences》 SCIE CSCD 2009年第2期284-302,共19页
A wide variety of unusual mantle has been reported from podiform chromitite orebodies Cr-31 and Cr-74 in the Luobusa (罗布莎) ophiolite, Tibet. A detailed investigation of chromitite ore- body Cr-ll, located in the ... A wide variety of unusual mantle has been reported from podiform chromitite orebodies Cr-31 and Cr-74 in the Luobusa (罗布莎) ophiolite, Tibet. A detailed investigation of chromitite ore- body Cr-ll, located in the Kangjinla (康金拉) district at the eastern end of the ophiolite, has revealed many of the same minerals, including diamond, moissanite, and some native elements, alloys, oxides, sulphides, silicates, carbonates, and tungstates. This orebody is particularly rich in diamonds, with over 1 000 grains recovered from about 1 100 kg sample of chromitite. More detailed studies and experiments are needed to understand the origin and significance of these unusual minerals because they have not been found in situ. It is a great breakthrough in mineralogical research that we have picked up more than 40 kinds of minerals from the Kangjinla chromite deposit in Luobusa. It is notable that a large amount of diamonds were firstly discovered from the Kangjinla chromite deposit as well as many other unusual minerals, such as moissanites, rutiles, native irons, and metal alloys. Especially, that diamond was found again in different chromitites in the same ophiolite belt provided new key evidence for discussing the origin of the diamond and the hosted chromitite and ophiolite. The mantle mineral group in Tibet has great significance in mineralogy and geodynamics. 展开更多
关键词 diamond CHROMITITE Kangjinla luobusa tibet.
原文传递
Ocean-continent Transition to Suprasubduction Zone Origin of the Western Yarlung Zangbo Ophiolites in SW Tibet, China: Multi-stage, Transient Evolution of the Neotethyan Oceanic Lithosphere
12
作者 LIU Fei YANG Jingsui +7 位作者 Yildirim DILEK LIAN Dongyang XIE Yanxue NIU Xiaolu FENG Guangying ZHAO Hui HUANG Jian LI Guanlong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期16-17,共2页
The ophiolites that crop out discontinuously along the;000 km Yarlung Zangbo Suture zone(YZSZ)between the Nanga Parbat and Namche Barwa syntaxes in southern Tibet represent the remnants of Neotethyan oceanic lithosp... The ophiolites that crop out discontinuously along the;000 km Yarlung Zangbo Suture zone(YZSZ)between the Nanga Parbat and Namche Barwa syntaxes in southern Tibet represent the remnants of Neotethyan oceanic lithosphere(Fig.1a).We have investigated the internal structure and the geochemical makeup of mafic-ultramafic rock assemblages that are exposed in the westernmost segment of the YZSZ where the suture zone architecture displays two distinct sub-belts of ophiolitic and mélange units separated by a continental Zhongba terrane(Fig.1b).These two sub-belts include the Daba–Xiugugabu in the south(Southern sub-belt,SSB)and the Dajiweng–Saga in the north(Northern sub-belt,NSB).We present new structural,geochemical,geochronological data from upper mantle peridotites and mafic dike intrusions occurring in these two sub-belts and discuss their tectonomagmatic origin.In-situ analysis of zircon grains obtained from mafic dikes within the Baer,Cuobuzha and Jianabeng massifs in the NSB,and within the Dongbo,Purang,Xiugugabu,Zhaga and Zhongba in the SSB have yielded crystallization ages ranging between130 and 122 Ma.Dike rocks in both sub-belts show N-MORB REE patterns and negative Nb,Ta and Ti anomalies,reminiscent of those documented from SSZ ophiolites.*Harzburgitic host rocks of the mafic dike intrusionsmainly display geochemical compositions of abyssal peridotites(Fig.2),with the exception of the Dajiweng harzburgites,which show the geochemical signatures of forearc peridotites(Lian et al.,2016).Extrusive rocks that are spatially associated with these peridotite massifs in both sub-belts also have varying compositional and geochemical features.Tithonian to Valanginian(150–135 Ma)basaltic rocks in the Dongbo massif have OIB-like geochemistry and 138 Ma basaltic lavas in the Purang massif have EMORB-like geochemistry(Liu et al.,2015).Tuffaceous rocks in the Dajiweng massif are140 Ma in age and show OIB-like geochemistry.We interpret these age and geochemical data to reflect a rifted continental margin origin of the extrusive rock units in both sub-belts.These data and structural observations show that the western Yarluang Zangbo ophiolites represent fragments of an Ocean-Continent Transition(OCT)peridotites altered by fluids in an initial supersubduction setting.We infer that mafic-ultramafic rock assemblages exposed in the SSB and NSB initially formed in an ocean–continent transition zone(OCTZ)during the late Jurassic,and that they were subsequently emplaced in the forearc setting of an intraoceanic subduction zone within a Neotethyan seaway during 130 to 122 Ma.The NSB and SSB are hence part of a single,S-directed nappe sheet derived from a Neotethyan seaway located north of the Zhongba terrane. 展开更多
关键词 China MULTI-STAGE Ocean-continent Transition to Suprasubduction Zone Origin of the Western Yarlung Zangbo ophiolites in SW tibet Transient Evolution of the Neotethyan Oceanic Lithosphere OIB
下载PDF
Mineral Chemistry and Geochemistry of Peridotites from the Zedang and Luobusa Ophiolites, Tibet: Implications for the Evolution of the Neo-Tethys 被引量:3
13
作者 Qiang Li Bin Xia +3 位作者 Jianfeng Li Lianze Xia Qiangtai Huang Zhongyu Xia 《Journal of Earth Science》 SCIE CAS CSCD 2015年第6期893-910,共18页
We present a new dataset on platinum group elements(PGEs), whole-rock major and trace elements, and mineral chemistry for the peridotites from the Zedang and Luobusa ophiolite suites, Tibet, in an attempt to better ... We present a new dataset on platinum group elements(PGEs), whole-rock major and trace elements, and mineral chemistry for the peridotites from the Zedang and Luobusa ophiolite suites, Tibet, in an attempt to better constrain the petrogenesis of the Zedang and Luobusa ophiolites and the tectonic evolution of the Neo-Tethys. Plots of chondrite-normalized PGE, PGE vs. Mg#, and PGE vs. Al_2O_3 suggest that the lherzolite and harzburgite from Zedang and Luobusa have similar PGE characteristics. The Zedang and Luobusa peridotites display U-shaped REE patterns and are enriched in some incompatible elements, indicative of melt-rock interaction. The PGE characteristics may be attributed to partial melting and heterogeneous melt-rock interaction. Mineral chemistry and whole rock major and trace elements data suggest that lherzolite and harzburgite from Zedang and Luobusa have similar geochemical properties. On the spinel Mg# vs. Cr# plot, the composition of the Zedang and Luobusa peridotites is consistent with both abyssal and subduction-zone peridotites. This study indicates that the Zedang and Luobusa peridotites have a similar origin and evolution path: they could have originated from a normal mid-ocean ridge environment and got refertilization in a supra-subduction zone setting. 展开更多
关键词 Zedang-luobusa ophiolite mantle peridotite PGE melt-rock interaction Yarlung Zangbo suture zone
原文传递
High-Pressure Nitrides and Microdiamonds from Tibetan Ophiolite
14
作者 Mahesh Patil 《Open Journal of Geology》 2019年第13期1042-1047,共6页
The samples of microdiamond as an inclusion of Os Ir alloy, coesite, stishovite, high pressure form of Tio2, high pressure nitrides associated with SiC along with boron carbide, have been reported in the past from the... The samples of microdiamond as an inclusion of Os Ir alloy, coesite, stishovite, high pressure form of Tio2, high pressure nitrides associated with SiC along with boron carbide, have been reported in the past from the placer deposits of Luobasa ophiolite of Yarlung Zangbo region of Tibet. For the formation of these ultra high findings, pressure in the range of 4 to 9 Gpa and temperature in the range of 700° C - 1300° C is required. Thus these minerals can either be incorporated into the chromitite in the deep upper mantle or they have an impact origin. In absence of impact crater, Prof. Fang and others have favored the mantle origin but for the formation of nitrides in the deep mantle, the source of N is not clear. However, the event of comet impact provides better explanation for the formation process. It also simplifies the explanation of coexistence of most of these minerals in a single crystal with the shallow origin and the perfect preservation of the coesite as consequence of rapid cooling after the shock metamorphism. 展开更多
关键词 Cubic BORON NITRIDE Qingsongite BORON CARBIDE Osbornite luobusa ophiolite COMET Impact
下载PDF
Lithogeochemistry and Genesis of Basaltic Lava in Raka Ophiolite, Tibet
15
作者 夏斌 石林 +2 位作者 张伯友 郑蓉 洪裕荣 《Chinese Journal Of Geochemistry》 EI CAS 1999年第1期1-8,共8页
The Raka ophiolite is located in the middle section of the plate suture zone in the Yarlung Zangbo region, Tibet. It is suggested that the genesis of the ophiolite is similar to that of non typic MORB in a marginal oc... The Raka ophiolite is located in the middle section of the plate suture zone in the Yarlung Zangbo region, Tibet. It is suggested that the genesis of the ophiolite is similar to that of non typic MORB in a marginal ocean basin through field geological investigation, lithogeochemical analysis and synthetical comparison. It is concluded that the ophiolite in this region may be relics of the subducted oceanic lithosphere in the Neo Tethys period. 展开更多
关键词 蛇绿岩 新特提斯海 海洋边缘盆地 岩石成因 西藏 地质构造
下载PDF
Distribution and origin of high magnetic anomalies at Luobusa Ophiolite in Southern Tibet 被引量:3
16
作者 Lanfang He Xiumian Hu +2 位作者 Yabing Zha Ligui Xu Yaohui Wang 《Chinese Science Bulletin》 SCIE EI CAS 2014年第23期2898-2908,共11页
The Luobusa Ophiolite,Southern Tibet,lies in the eastern portion of Indus–Yarlung Zangbo suture zone that separates Eurasia from the Indian continent.An aeromagnetic reconnaissance survey has revealed an EWtrending Y... The Luobusa Ophiolite,Southern Tibet,lies in the eastern portion of Indus–Yarlung Zangbo suture zone that separates Eurasia from the Indian continent.An aeromagnetic reconnaissance survey has revealed an EWtrending Yarlung Zangbo River aeromagnetic anomaly zone,and it is considered to be caused mainly by the Indus–Yarlung Zangbo Ophiolite.The Luobusa Ophiolite reflects the eastern portion of the Yarlung Zangbo River aeromagnetic anomaly zone.Conventionally,the ultramafic rock in the Luobusa Ophiolite is considered as the origin of the high magnetic anomalies.However,results from the surface magnetic survey and the magnetic susceptibility measurements from drill cores indicate that the high magnetic anomalies are distributed inhomogeneously in the Luobusa Ophiolite.In some cases,the susceptibility exhibits more than 30 times difference between two sides of the same sample.A fact emerged that the susceptibility of dunite with serpentinization is higher than that of fresh dunite,harzburgite and chromite when we analyzed the measurement results.In order to understand the origin of the high magnetic anomalies,we measured the density and susceptibility of 17 samples,microscopic and electron probe analyses have been performed as well.The result indicates the presence of dunite with serpentinization containing an abundant of micro-fissures filled with magnetite.Olivine has a susceptibility of about 2.7–351(910-5SI),pyroxene about 16–320,and chromite about200–800.All these units feature relatively low susceptibility in ultramafic rock,and only the magnetite is characterized by a high susceptibility of about 200,000(910-5SI).Based on these observations,we conclude that the precipitation of magnetite in the process of serpentinization of the olivine caused by the geological process in the Luobusa Ophiolite is the origin of high magnetic anomalies. 展开更多
关键词 罗布莎蛇绿岩 航磁异常带 西藏南部 雅鲁藏布江缝合带 纯橄榄岩 起源 超镁铁质岩石 磁力测量
原文传递
Titanium, Ti, A New Mineral Species from Luobusha, Tibet, China 被引量:8
17
作者 FANG Qingsong BAI Wenji +5 位作者 YANG Jingsu RONG He SHI Nicheng LI Guowu XIONG Ming MA Zhesheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第5期1275-1280,共6页
We describe the new mineral species titanium, ideally Ti, found in the podiform chromitites of the Luobusha ophiolite in Tibet, People's Republic of China. The irregular crystals range from 0.1 to 0.6 mm in diameter ... We describe the new mineral species titanium, ideally Ti, found in the podiform chromitites of the Luobusha ophiolite in Tibet, People's Republic of China. The irregular crystals range from 0.1 to 0.6 mm in diameter and form an intergrowth with coesite and kyanite. Titanium is silver grey in colour, the luster is metallic, it is opaque, the streak is grayish black, and it is non-fluorescent. The mineral is malleable, has a rough to hackly fracture and has no apparent cleavage. The estimated Mohs hardness is 4, and the calculated density is 4.503 g/cm3. The composition is Ti 99.23-100.00 wt%. The mineral is hexagonal, space group P6flmmc. Unit-cell parameters are a 2.950 (2) ~, c 4.686 (1) A,V 35.32 (5) A3, Z = 2. The five strongest powder diffraction lines [d in A (hkl) (I/I0)] are: 2.569 (010) (32), 2.254(011) (100), 1.730 (012) (16), 1.478 (110) (21), and 0.9464 (121) (8). The species and name were approved by the CNMNC (IMA 2010-044). 展开更多
关键词 TITANIUM new mineral species TI CHROMITITE Luobusha ophiolite tibet
下载PDF
Naquite, FeSi, a New Mineral Species from Luobusha, Tibet, Western China 被引量:6
18
作者 SHI Nlcheng BAI Wenji +4 位作者 LI Guowu XIONG Ming YANG Jingsu MA Zhesheng RONG He 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第3期533-538,共6页
A new mineral species, named naquite(FeSi), is found in the podiform chromitites of the Luobusha ophiolite in Qusong County, Tibet, China. The detailed composition is Fe 65.65, Si 32.57 and Al 1.78 wt%. The mineral ... A new mineral species, named naquite(FeSi), is found in the podiform chromitites of the Luobusha ophiolite in Qusong County, Tibet, China. The detailed composition is Fe 65.65, Si 32.57 and Al 1.78 wt%. The mineral is cubic, space group P213. The irregular crystals range from 15 to 50 μm in diameter and form an intergrowth with luobusaite. Naquite is steel grey in color, opaque, with a metallic lustre and gives a grayish-black streak. The mineral is brittle, has a conchoidal fracture and no apparent cleavage. The estimated Mohs hardness is 6.5, and the calculated density is 6.128 g/cm3. Unit-cell parameters are a 4.486 (4) A, V 90.28 (6)A^3, Z=4. The five strongest powder diffraction lines [d inA(hkl) (I/I0)] are: 3.1742 (110) (40), 2.5917(111) (43), 2.0076 (210) (100), 1.8307 (211) (65), and 1.1990 (321) (36). Originally called 'fersilicite', the species and new name have now been approved by the CNMNC (IMA 2010-010). 展开更多
关键词 new mineral fersilicite CHROMITE Luobusha ophiolite tibet
下载PDF
The Petrology, Geochemistry, and Petrogenesis of E-MORB-type Mafic Rocks from the Guomangco Ophiolitic Mélange, Tibet 被引量:3
19
作者 XU Mengjing LI Cai +1 位作者 WU Yanwang XIE Chaoming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第5期1437-1453,共17页
The Guomangco ophiolitic melange is situated in the middle part of the Shiquanhe- Yongzhu-Jiali ophiolitic melange belt (SYJMB) and possesses all the subunits of a typical Penrose- type ophiolite pseudostratigraphy.... The Guomangco ophiolitic melange is situated in the middle part of the Shiquanhe- Yongzhu-Jiali ophiolitic melange belt (SYJMB) and possesses all the subunits of a typical Penrose- type ophiolite pseudostratigraphy. The study of the Guomangco ophiolitic melange is very important for investigating the tectonic evolution of the SYJMB. The mafic rocks of this ophiolitic melange mainly include diabases, sillite dikes, and basalts. Geochemical analysis shows that these dikes mostly have E-MORB major and trace element signatures; this is the first time that this has been observed in the SYJMB. The basalts have N-MORB and IAB affinities, and the mineral chemistry of harzburgites shows a composition similar to that of SSZ peridotites, indicating that the Guomangco ophiolitic melange probably originated in a back-arc basin. The Guomangco back-arc basin opened in the Middle Jurassic, which was caused by southward subduction of the Neo-Tethys Ocean in central Tibet. The main spreading of this back-arc basin occurred during the Late Jurassic, and the basalts were formed during this time. With the development of the back-arc basin, the subducted slab gradually retreated, and new mantle convection occurred in the mantle wedge. The recycling may have caused the metasomatized mantle to undergo a high degree of partial melting and to generate E- MORBs in the Early Cretaceous. E-MORB-type dikes probably crystallized from melts produced by about 20%-30% partial melting of a spinel mantle source, which was metasomatized by melts from low-degree partial melting of the subducted slab. 展开更多
关键词 Guomangco ophiolitic melange E-MORB GEOCHEMISTRY PETROGENESIS tibet
下载PDF
An X-Ray Diffraction Study of an Inclusion in Diamond from the Luobusha Chromite Deposit in Tibet,China 被引量:1
20
作者 SHINicheng BAIWenji +5 位作者 MAZhesheng FANGQingsong XIONGMing YANBinggang DAIMingquan YANGJingsui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2003年第3期326-331,共6页
Diamond was found in podiform chromitites of ophiolite and harzburgite from Luobusha, Tibet. There are silicate inclusions in some diamond grains from this area. In the present work, the CCD (charge coupled detector) ... Diamond was found in podiform chromitites of ophiolite and harzburgite from Luobusha, Tibet. There are silicate inclusions in some diamond grains from this area. In the present work, the CCD (charge coupled detector) technology of X-ray powder diffraction was applied to the study of the inclusion in diamond from the ophiolite of Tibet. Diffraction patterns are obtained even though the inclusion is only 20 μm in crystal size. The results show that the inclusion in diamond consists of talc and clinochrysotile. Therefore, it is clear that the diamond from the ophiolite of Luobusha, Tibet, is natural diamond rather than a synthetic one. 展开更多
关键词 diamond from ophiolite inclusion in diamond Luobusha of tibet China
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部