Objectives: To quantitatively study the adhesive pro- perties of hepatoma cells to collagen Ⅳ coated artifi- cial basement membrane and to investigate the rele- vance of cell adhesive forces to the concentration of c...Objectives: To quantitatively study the adhesive pro- perties of hepatoma cells to collagen Ⅳ coated artifi- cial basement membrane and to investigate the rele- vance of cell adhesive forces to the concentration of collagen Ⅳ. Methods: Synchronous G1 and S phase cells were a- chieved using thymine-2-desoxyriboside and cochicine sequential blockage method and double thymine-2- desoxyriboside blockage method respectively. The adhesive forces of hepatoma cells were investigated by micropipette aspiration technique. Results: The adhesive forces of hepatoma cells to ar- tificial basement membrane were (107.78±65.44) ×10^(-10)N, (182.60±107.88)×10^(-10)N, (298.91± 144.13)×10^(-10)N when the concentration of the membrane coated by 1, 2, 5μg/ml collagen Ⅳ re- spectively (P<0.001). The adhesive forces of G1 and S phases hepatoma cells to artificial basement membrane were (275.86±232.80)×10^(-10)N and (161.16±120.40)×10^(-10)N respectively when the concentration of the membrane coated by 5μg/ml collagen Ⅳ (P<0.001). Conclusions: The adhesive forces of hepatoma cells to artifical basement membrane in direct proportion to the concentration of collagen Ⅳ suggests that the in- crease of basement membrane might be conducive to the chemotactic motion and adhesiveness of tumor cells. G1 phase cells are more capable of adhering to basement membrane than S phase cells. Hepatoma cells, especially G1 phase cells, may survive in blood circulation, and sequest and adhere in microcircula- tion, and get through basement membrane for re- mote metastasis.展开更多
基金This work was supported by a grant from the National Natural Science Foundation of China (No. 39500037).
文摘Objectives: To quantitatively study the adhesive pro- perties of hepatoma cells to collagen Ⅳ coated artifi- cial basement membrane and to investigate the rele- vance of cell adhesive forces to the concentration of collagen Ⅳ. Methods: Synchronous G1 and S phase cells were a- chieved using thymine-2-desoxyriboside and cochicine sequential blockage method and double thymine-2- desoxyriboside blockage method respectively. The adhesive forces of hepatoma cells were investigated by micropipette aspiration technique. Results: The adhesive forces of hepatoma cells to ar- tificial basement membrane were (107.78±65.44) ×10^(-10)N, (182.60±107.88)×10^(-10)N, (298.91± 144.13)×10^(-10)N when the concentration of the membrane coated by 1, 2, 5μg/ml collagen Ⅳ re- spectively (P<0.001). The adhesive forces of G1 and S phases hepatoma cells to artificial basement membrane were (275.86±232.80)×10^(-10)N and (161.16±120.40)×10^(-10)N respectively when the concentration of the membrane coated by 5μg/ml collagen Ⅳ (P<0.001). Conclusions: The adhesive forces of hepatoma cells to artifical basement membrane in direct proportion to the concentration of collagen Ⅳ suggests that the in- crease of basement membrane might be conducive to the chemotactic motion and adhesiveness of tumor cells. G1 phase cells are more capable of adhering to basement membrane than S phase cells. Hepatoma cells, especially G1 phase cells, may survive in blood circulation, and sequest and adhere in microcircula- tion, and get through basement membrane for re- mote metastasis.