The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetatio...The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetation in Heihe region, Heilongjiang, China. Two typical and widely distributed forest types in the study area, namely forest type A and forest type B, were selected as study subjects. Forest type A is pure broadleaf forest or broadleaf mixed forest mainly composing of superior Betula platyphylla and Populus davidiana in the area with gradient 〈25°, while forest type B is pure forest or mixed forest composing of superior Quercus mongolica and Betula davurica in the area with gradient 〉25°. Species richness, vegetation coverage, important value, and similarity index of commtmity in different layers (Herb, shrub, small tree, and arbor layers) were investigated and analyzed for the two typical forests. The results show that after fire interference, the species richness and coverage in each layer in forest type A were higher than that in forest type B. Both for forest type A and B, with elapse of post-fire years, the species richness and coverage of herbs and shrubs showed a decline tendency, while those of arbor layer present a rising tendency. Through comparison of the important values of species in each layer and analysis of community structure changes, the dynamic process of post-fire vegetation succession for forest type A and B was separately determined. Post-fire 80 years' succession tendency of forest type A is B. platyphylla and Larix gmelinii mixed forest. Its shrub layer is mainly composed of Corylus heterophylla and Vaccinium uliginosum, and herb layer is dominated by Carex tristachya, Athyrium multidentatum, and Pyrola incarnate; whereas, the post-fire 80 years' succession of forest type B is Q. mongolica and B. davurica mixed forest. Its shrub layer is mainly composed of lespedeza bicolar and corylus heterophylla and herb layer is dominated by Carex tristachya, Asparagus densiflorus, and Hemerocallis minor.展开更多
The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetatio...The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetation in Heihe region, Heilongjiang, China.Two typical and widely distributed forest types in the study area, namely forest type A and forest type B, were selected as study subjects.Forest type A is pure broadleaf forest or broadleaf mixed forest mainly composing of superior Betula platyphylla and Populus davidiana in the area with gradient <25°, while forest type B is pure forest or mixed forest composing of superior Quercus mongolica and Betula davurica in the area with gradient >25°.Species richness, vegetation coverage, important value, and similarity index of community in different layers(Herb, shrub, small tree, and arbor layers) were investigated and analyzed for the two typical forests.The results show that after fire interference, the species richness and coverage in each layer in forest type A were higher than that in forest type B.Both for forest type A and B, with elapse of post-fire years, the species richness and coverage of herbs and shrubs showed a decline tendency, while those of arbor layer present a rising tendency.Through comparison of the important values of species in each layer and analysis of community structure changes, the dynamic process of post-fire vegetation succession for forest type A and B was separately determined.Post-fire 80 years' succession tendency of forest type A is B.platyphylla and Larix gmelinii mixed forest.Its shrub layer is mainly composed of Corylus heterophylla and Vaccinium uliginosum, and herb layer is dominated by Carex tristachya, Athyrium multidentatum, and Pyrola incarnate;whereas, the post-fire 80 years' succession of forest type B is Q.mongolica and B.davurica mixed forest.Its shrub layer is mainly composed of lespedeza bicolar and corylus heterophylla and herb layer is dominated by Carex tristachya, Asparagus densiflorus, and Hemerocallis minor.展开更多
The present study has been conducted in one of the five natural vegetation fragments at the Experimental Farm Edgardia, in Botucatu, São Paulo State, Brazil. In the past the forest fragment suffered disturbanc...The present study has been conducted in one of the five natural vegetation fragments at the Experimental Farm Edgardia, in Botucatu, São Paulo State, Brazil. In the past the forest fragment suffered disturbances due to the selective exploitation of tree species and the use of part of the surface as pasture. The objectives of this research were to evaluate the structure and the dynamics of natural vegetation. Three phytosociological surveys (2006, 2010 and 2014) were carried out in a sampled area of one hectare. The most abundant species were mapped in 2014, in a sampling unit with two hectares. Individuals of 37 families and 110 species have been recorded. The oscillation of the basal area observed through the forest inventories was due to the instability caused by disturbances. Only two out of the seven most abundant species mapped showed exponential diameter distribution. The unimodal distributions shown by the other five species have suggested that the vegetation has been occupying the most open spaces through regeneration in cycles. There was direct association between the spatial distribution and the dispersion syndrome for five out of the seven most abundant species. Three species have zoochoric dispersion, showing that wild animals populations have accomplished their function in the dispersion of seeds/fruit. The spatial distributions of four out of the seven most abundant species have provided evidence of how the regeneration of natural vegetation is being processed in this area.展开更多
文摘The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetation in Heihe region, Heilongjiang, China. Two typical and widely distributed forest types in the study area, namely forest type A and forest type B, were selected as study subjects. Forest type A is pure broadleaf forest or broadleaf mixed forest mainly composing of superior Betula platyphylla and Populus davidiana in the area with gradient 〈25°, while forest type B is pure forest or mixed forest composing of superior Quercus mongolica and Betula davurica in the area with gradient 〉25°. Species richness, vegetation coverage, important value, and similarity index of commtmity in different layers (Herb, shrub, small tree, and arbor layers) were investigated and analyzed for the two typical forests. The results show that after fire interference, the species richness and coverage in each layer in forest type A were higher than that in forest type B. Both for forest type A and B, with elapse of post-fire years, the species richness and coverage of herbs and shrubs showed a decline tendency, while those of arbor layer present a rising tendency. Through comparison of the important values of species in each layer and analysis of community structure changes, the dynamic process of post-fire vegetation succession for forest type A and B was separately determined. Post-fire 80 years' succession tendency of forest type A is B. platyphylla and Larix gmelinii mixed forest. Its shrub layer is mainly composed of Corylus heterophylla and Vaccinium uliginosum, and herb layer is dominated by Carex tristachya, Athyrium multidentatum, and Pyrola incarnate; whereas, the post-fire 80 years' succession of forest type B is Q. mongolica and B. davurica mixed forest. Its shrub layer is mainly composed of lespedeza bicolar and corylus heterophylla and herb layer is dominated by Carex tristachya, Asparagus densiflorus, and Hemerocallis minor.
基金supported by Heilongjiang Natural Foundation (C200625)Forestry Science and Technology Sup-porting Program (2006BAD03A0805)
文摘The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetation in Heihe region, Heilongjiang, China.Two typical and widely distributed forest types in the study area, namely forest type A and forest type B, were selected as study subjects.Forest type A is pure broadleaf forest or broadleaf mixed forest mainly composing of superior Betula platyphylla and Populus davidiana in the area with gradient <25°, while forest type B is pure forest or mixed forest composing of superior Quercus mongolica and Betula davurica in the area with gradient >25°.Species richness, vegetation coverage, important value, and similarity index of community in different layers(Herb, shrub, small tree, and arbor layers) were investigated and analyzed for the two typical forests.The results show that after fire interference, the species richness and coverage in each layer in forest type A were higher than that in forest type B.Both for forest type A and B, with elapse of post-fire years, the species richness and coverage of herbs and shrubs showed a decline tendency, while those of arbor layer present a rising tendency.Through comparison of the important values of species in each layer and analysis of community structure changes, the dynamic process of post-fire vegetation succession for forest type A and B was separately determined.Post-fire 80 years' succession tendency of forest type A is B.platyphylla and Larix gmelinii mixed forest.Its shrub layer is mainly composed of Corylus heterophylla and Vaccinium uliginosum, and herb layer is dominated by Carex tristachya, Athyrium multidentatum, and Pyrola incarnate;whereas, the post-fire 80 years' succession of forest type B is Q.mongolica and B.davurica mixed forest.Its shrub layer is mainly composed of lespedeza bicolar and corylus heterophylla and herb layer is dominated by Carex tristachya, Asparagus densiflorus, and Hemerocallis minor.
文摘The present study has been conducted in one of the five natural vegetation fragments at the Experimental Farm Edgardia, in Botucatu, São Paulo State, Brazil. In the past the forest fragment suffered disturbances due to the selective exploitation of tree species and the use of part of the surface as pasture. The objectives of this research were to evaluate the structure and the dynamics of natural vegetation. Three phytosociological surveys (2006, 2010 and 2014) were carried out in a sampled area of one hectare. The most abundant species were mapped in 2014, in a sampling unit with two hectares. Individuals of 37 families and 110 species have been recorded. The oscillation of the basal area observed through the forest inventories was due to the instability caused by disturbances. Only two out of the seven most abundant species mapped showed exponential diameter distribution. The unimodal distributions shown by the other five species have suggested that the vegetation has been occupying the most open spaces through regeneration in cycles. There was direct association between the spatial distribution and the dispersion syndrome for five out of the seven most abundant species. Three species have zoochoric dispersion, showing that wild animals populations have accomplished their function in the dispersion of seeds/fruit. The spatial distributions of four out of the seven most abundant species have provided evidence of how the regeneration of natural vegetation is being processed in this area.