期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Stability analysis of discrete-time BAM neural networks based on standard neural network models 被引量:1
1
作者 张森林 刘妹琴 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第7期689-696,共8页
To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which inte... To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks. 展开更多
关键词 Standard neural network model (SNNM) Bidirectional associative memory (BAM) Linear matrix inequality (LMI) stability Generalized eigenvalue problem (GEVP)
下载PDF
LMI-based approach for global asymptotic stability analysis of continuous BAM neural networks 被引量:2
2
作者 张森林 刘妹琴 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第1期32-37,共6页
Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network mode... Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is ad- vanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs’ stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs). 展开更多
关键词 Standard neural network model (SNNM) Bidirectional associative memory (BAM) neural network Linear matrix inequality (LMI) Linear differential inclusion (LDI) Global asymptotic stability
下载PDF
Stability analysis of extended discrete-time BAMneural networks based on LMI approach
3
作者 刘妹琴 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期588-594,共7页
We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-tim... We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-time BAM neural networks as the extended discrete-time BAM neural networks with non-threshold activation functions. Here we present some conditions under which the neural networks have unique equilibrium points. To judge the global asymptotic stability of the equilibrium points, we introduce a new neural network model - standard neural network model (SNNM). For the SNNMs, we derive the sufficient conditions for the global asymptotic stability of the equilibrium points, which are formulated as some linear matrix inequalities (LMIs). We transform the discrete-time BAM into the SNNM and apply the general result about the SNNM to the determination of global asymptotic stability of the discrete-time BAM. The approach proposed extends the known stability results, has lower conservativeness, can be verified easily, and can also be applied to other forms of recurrent neural networks. 展开更多
关键词 standard neural network model bidirectional associative memory DISCRETE-TIME linear matrix inequality global asymptotic stability.
下载PDF
时滞标准神经网络模型及其应用 被引量:4
4
作者 刘妹琴 《自动化学报》 EI CSCD 北大核心 2005年第5期750-758,共9页
提出一种新的神经网络模型—时滞标准神经网络模型(DSNNM),它由线性动力学系统和有界静态时滞非线性算子连接而成.利用不同的Lyapunov 泛函和S 方法推导出DSNNM 全局渐近稳定性和全局指数稳定性的充分条件,这些条件可表示为线性矩阵不等... 提出一种新的神经网络模型—时滞标准神经网络模型(DSNNM),它由线性动力学系统和有界静态时滞非线性算子连接而成.利用不同的Lyapunov 泛函和S 方法推导出DSNNM 全局渐近稳定性和全局指数稳定性的充分条件,这些条件可表示为线性矩阵不等式(LMI)形式.大多数时滞(或非时滞)动态神经网络(DANN)稳定性分析或神经网络控制系统都可以转化为DSNNM,以便用统一的方法进行稳定性分析或镇定控制.从DSNNM 应用于时滞联想记忆(BAM)神经网络的稳定性分析以及PH 中和过程神经控制器的综合实例, 可以看出,得到的稳定性判据扩展并改进了以往文献中的稳定性定理,而且可将稳定性分析推广到非线性控制系统的综合. 展开更多
关键词 时滞标准神经网络模型(DSNNM) 线性矩阵不等式(LMI) 稳定性 广义特征值问题(GEVP) 双向联想记忆(BAM)
下载PDF
连续BAM神经网络的稳定性分析—LMI/BMI方法 被引量:1
5
作者 刘妹琴 《电路与系统学报》 CSCD 北大核心 2005年第3期52-57,共6页
对于连续双向联想记忆(BAM)神经网络的平衡点的稳定性问题,目前人们已经得到了很多富有意义的成果。本文提出一种新的神经网络模型-标准神经网络模型(SNNM),利用不同的Lyapunov泛函和S方法推导出基于线性/双线性矩阵不等式(LMI/BMI)的S... 对于连续双向联想记忆(BAM)神经网络的平衡点的稳定性问题,目前人们已经得到了很多富有意义的成果。本文提出一种新的神经网络模型-标准神经网络模型(SNNM),利用不同的Lyapunov泛函和S方法推导出基于线性/双线性矩阵不等式(LMI/BMI)的SNNM全局渐近稳定性和全局指数稳定性的充分条件。通过状态的线性变换,将连续BAM神经网络转化为SNNM,并利用有关SNNM的稳定性的一些结论,得到连续BAM神经网络平衡点的全局渐近稳定性和全局指数稳定性的充分条件,这些条件都以LMI或BMI形式给出,容易验证,保守性低。该方法扩展了以前的稳定性结果,同时也适用于其它类型的递归神经网络的稳定性分析。 展开更多
关键词 标准神经网络模型(SNNM) 双向联想记忆(BAM) 线性/双线性矩阵不等式(LMI/BMI) 渐近稳定 指数稳定性
下载PDF
基于LMI方法的时滞BAM神经网络的全局稳定性分析
6
作者 刘妹琴 颜钢锋 张森林 《电子与信息学报》 EI CSCD 北大核心 2004年第8期1237-1244,共8页
对于时滞双向联想记忆(DBAM)神经网络的平衡点的稳定性问题,目前人们已经得到了很多富有意义的成果.该文提出一种新的神经网络模型——标准神经网络模型(SNNM),通过状态的线性变换,将DBAM神经网络转化为时滞SNNM(DSNNM),并利用有关DSNN... 对于时滞双向联想记忆(DBAM)神经网络的平衡点的稳定性问题,目前人们已经得到了很多富有意义的成果.该文提出一种新的神经网络模型——标准神经网络模型(SNNM),通过状态的线性变换,将DBAM神经网络转化为时滞SNNM(DSNNM),并利用有关DSNNM的稳定性的一些结论,得到DBAM神经网络平衡点的全局渐近稳定性的充分条件.这些条件都以线性矩阵不等式(LMI)的形式给出,容易验证,保守性低.该方法扩展了以前的稳定性结果,同时也适用于其它类型的递归神经网络(时滞或非时滞)的稳定性分析. 展开更多
关键词 标准神经网络模型 时滞双向联想记忆神经网络 线性矩阵不等式 线性微分包含 全局渐近 稳定性
下载PDF
非对称联想记忆模型的性质及稳定性
7
作者 舒华英 金重奇 《北京邮电学院学报》 CSCD 1992年第4期41-47,共7页
本文讨论了非对称联想记忆模型的若干性质,并给出了在连续和离散两种情况下判别其稳定性的充分条件.
关键词 联想记忆 神经网络 非对称网络
下载PDF
一类离散BAM神经网络的全局渐近稳定性分析——LMI方法
8
作者 刘妹琴 《模式识别与人工智能》 EI CSCD 北大核心 2005年第1期89-95,共7页
提出一种新的神经网络模型——标准神经网络模型(SNNM),并给出基于线性矩阵不等式(LMI)的SNNM平衡点的全局渐近稳定性定理。通过状态的线性变换,将推广的离散BAM神经网络转化为SNNM,利用SNNM的稳定性结论,判定该离散BAM的全局渐近稳定... 提出一种新的神经网络模型——标准神经网络模型(SNNM),并给出基于线性矩阵不等式(LMI)的SNNM平衡点的全局渐近稳定性定理。通过状态的线性变换,将推广的离散BAM神经网络转化为SNNM,利用SNNM的稳定性结论,判定该离散BAM的全局渐近稳定性。该方法扩展了以前的稳定性结果。保守性低,容易验证,同时也适用于其它类型的递归神经网络的稳定性分析。 展开更多
关键词 标准神经网络模型 双向联想记忆神经网络 线性矩阵不等式 全局渐近稳定性
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部