In this paper, we propose a robust fractional-order proportional-integral(FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient...In this paper, we propose a robust fractional-order proportional-integral(FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities(LMIs) approach by using an indirect Lyapunov method. The proposed FOPI observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional(FOP) observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.展开更多
This paper is concerned with the problem of the full-order observer design for a class of fractional-order Lipschitz nonlinear systems. By introducing a continuous frequency distributed equivalent model and using an i...This paper is concerned with the problem of the full-order observer design for a class of fractional-order Lipschitz nonlinear systems. By introducing a continuous frequency distributed equivalent model and using an indirect Lyapunov approach, the sufficient condition for asymptotic stability of the full-order observer error dynamic system is presented. The stability condition is obtained in terms of LMI, which is less conservative than the existing one. A numerical example demonstrates the validity of this approach.展开更多
基金supported by King Abdullah University of Science and Technology (KAUST),KSA
文摘In this paper, we propose a robust fractional-order proportional-integral(FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities(LMIs) approach by using an indirect Lyapunov method. The proposed FOPI observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional(FOP) observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.
基金supported by National Natural Science Foundation of China(Nos.61104072,61104210 and 61174211)Construct Program of the Key Discipline in Hunan Province
文摘This paper is concerned with the problem of the full-order observer design for a class of fractional-order Lipschitz nonlinear systems. By introducing a continuous frequency distributed equivalent model and using an indirect Lyapunov approach, the sufficient condition for asymptotic stability of the full-order observer error dynamic system is presented. The stability condition is obtained in terms of LMI, which is less conservative than the existing one. A numerical example demonstrates the validity of this approach.