In this paper, we discuss a mathematical model of malaria transmission between vector and host population. We study the basic qualitative properties of the model, the boundedness and non-negativity, calculate all equi...In this paper, we discuss a mathematical model of malaria transmission between vector and host population. We study the basic qualitative properties of the model, the boundedness and non-negativity, calculate all equilibria, and prove the global stability of them and the behaviour of the model when the basic reproduction ratio R0 is greater than one or less than one. The global stability of equilibria is established by using Lyapunov method. Graphical representations of the calculated parameters and their effects on disease eradication are provided.展开更多
An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local ...An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.展开更多
Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter...Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.展开更多
In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start wi...In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.展开更多
A p-Laplacian ( p > 2 ) reaction-diffusion system on weighted graphs is introduced to a networked SIR epidemic model. After overcoming difficulties caused by the nonlinear p-Laplacian, we show that the endemic equi...A p-Laplacian ( p > 2 ) reaction-diffusion system on weighted graphs is introduced to a networked SIR epidemic model. After overcoming difficulties caused by the nonlinear p-Laplacian, we show that the endemic equilibrium is globally asymptotically stable if the basic reproduction number r<sub>0</sub> is greater than 1, while the disease-free equilibrium is globally asymptotically stable if r<sub>0</sub> is lower than 1. We extend the stability results of SIR models with graph Laplacian ( p = 2 ) to general graph p-Laplacian.展开更多
To investigate the effects of self-memory diffusion on predator-prey models, we consider a predator-prey model with Bazykin functional response of self- memory diffusion. The uniqueness, boundedness, positivity, exist...To investigate the effects of self-memory diffusion on predator-prey models, we consider a predator-prey model with Bazykin functional response of self- memory diffusion. The uniqueness, boundedness, positivity, existence and stability of equilibrium point of the model are studied. In this paper, the uniqueness of the solution is discussed under the non-negative initial function and Neumann boundary conditions satisfying a specific space. The boundness of the solution is proved by the comparison principle of parabolic equations, and the positivity of the solution is proved by the strong maximum principle of parabolic equations. Hurwitz criterion and Lyapunov function construction are used to analyze the local stability and global stability of feasible equilibrium points. The results show that the system solution is unique non-negative and bounded. The model is unstable at the trivial equilibrium point E0 and the boundary equilibrium point E1, and the condition of whether the positive equilibrium point E2 is stable under certain conditions is given.展开更多
This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of “set-valu...This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of “set-valued derivative” of vector Lyapunov functions is introduced, some generalized comparison principles on discontinuous systems are shown. Furthermore, Lyapunov stability theory is developed for a class of discontinuous systems based on locally Lipschitz continuous and regular vector Lyapunov functions.展开更多
In this paper, we considered a homogeneous reaction-diffusion predator-prey system with Holling type II functional response subject to Neumann boundary conditions. Some new sufficient conditions were analytically esta...In this paper, we considered a homogeneous reaction-diffusion predator-prey system with Holling type II functional response subject to Neumann boundary conditions. Some new sufficient conditions were analytically established to ensure that this system has globally asymptotically stable equilibria and Hopf bifurcation surrounding interior equilibrium. In the analysis of Hopf bifurcation, based on the phenomenon of Turing instability and well-done conditions, the system undergoes a Hopf bifurcation and an example incorporating with numerical simulations to support the existence of Hopf bifurcation is presented. We also derived a useful algorithm for determining direction of Hopf bifurcation and stability of bifurcating periodic solutions correspond to j ≠0 and j = 0, respectively. Finally, all these theoretical results are expected to be useful in the future study of dynamical complexity of ecological environment.展开更多
This paper deals with the questio n of global stability of the positive locally asymptotically stable equilibrium in a class of predator\|prey system of Gause\|typ e with Holling Ⅲ functional response. The Dulac'...This paper deals with the questio n of global stability of the positive locally asymptotically stable equilibrium in a class of predator\|prey system of Gause\|typ e with Holling Ⅲ functional response. The Dulac's criterion is applied and lia punov functions are constructed to establish the global stability.展开更多
This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types ...This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types of a common quadratic Lyapunov function and an ellipsoid.These classical results require either the quadratic Lyapunov function or the employed ellipsoid to be of the centralized type.In some cases,the ellipsoids are defined dependently as the level sets of a decentralized Lyapunov function.In this paper,we extend the existing results by the simultaneous use of a general decentralized Lyapunov function and a decentralized ellipsoid parameterized independently.The proposed conditions provide less conservative results than existing works in the sense of the ultimate invariant set of attraction size.Two different approaches are proposed to extract the ultimate invariant set of attraction with a minimum size,i.e.,a purely numerical method and a numerical-analytical one.In the former,both invariant and attractiveness conditions are imposed to extract the final set of matrix inequalities.The latter is established on a principle that the attractiveness of a set implies its invariance.Thus,the stability conditions are derived based on only the attractiveness property as a set of matrix inequalities with a smaller dimension.Illustrative examples are presented to prove the satisfactory operation of the proposed stabilization methods.展开更多
For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic des...For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.展开更多
With the occurrence of burst interference,bit error rate( BER) stability of the wireless communication system( WCS) always degrades significantly. To cope with it,a stability control algorithm is proposed,utilizing th...With the occurrence of burst interference,bit error rate( BER) stability of the wireless communication system( WCS) always degrades significantly. To cope with it,a stability control algorithm is proposed,utilizing the stability theory of switched systems,which is specifically applicable for multi-parameter adaptive WCS with spectrum sensing ability,and it is capable of stabilizing BER within a reasonable range. Firstly,WCS is modeled as a switched system. Then,based on the multi-Lyapunov function,controlling rules are presented to enable the switched system to satisfy stable condition asymptotically. Finally,analysis and numerical simulation results demonstrate that the switched WCS with the proposed controlling rules is superior to conventional power-controlled WCS with or without state feedback control in terms of stability performance.展开更多
This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment ...This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.展开更多
A design method for controllers and a comprehensive stability analysis for an acrobat based on Lyapunov functions are presented. Three control laws based on three Lyapunov functions are designed to increase the energy...A design method for controllers and a comprehensive stability analysis for an acrobat based on Lyapunov functions are presented. Three control laws based on three Lyapunov functions are designed to increase the energy so as to move the acrobot into the unstable inverted equilibrium position, and solve the problem of posture and energy. The concept of a non-smooth Lyapunov function is employed to analyze the stability of the whole system. The validity of this strategy is demonstrated by simulations.展开更多
The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain syst...The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.展开更多
In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no end...In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.展开更多
A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derive...A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derived for the global asymptotic stability of the positive solutions of the system. As a corollary, it is shown that the global asymptotic stability of the positive solution is maintained provided that the delayed negative feedbacks dominate other interspecific interaction effects with delays and the delays are sufficiently small.展开更多
In this paper, we establish new sufficient conditions for the infected equilibrium of a nonresident computer virus model to be globally asymptotically stable. Our results extend two kind of known results in recent lit...In this paper, we establish new sufficient conditions for the infected equilibrium of a nonresident computer virus model to be globally asymptotically stable. Our results extend two kind of known results in recent literature.展开更多
In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By u...In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.展开更多
In this paper, we study a kind of the delayed SEIQR infectious disease model with the quarantine and latent, and get the threshold value which determines the global dynamics and the outcome of the disease. The model h...In this paper, we study a kind of the delayed SEIQR infectious disease model with the quarantine and latent, and get the threshold value which determines the global dynamics and the outcome of the disease. The model has a disease-free equilibrium which is unstable when the basic reproduction number is greater than unity. At the same time, it has a unique endemic equilibrium when the basic reproduction number is greater than unity. According to the mathematical dynamics analysis, we show that disease-free equilibrium and endemic equilibrium are locally asymptotically stable by using Hurwitz criterion and they are globally asymptotically stable by using suitable Lyapunov functions for any Besides, the SEIQR model with nonlinear incidence rate is studied, and the that the basic reproduction number is a unity can be found out. Finally, numerical simulations are performed to illustrate and verify the conclusions that will be useful for us to control the spread of infectious diseases. Meanwhile, the will effect changing trends of in system (1), which is obvious in simulations. Here, we take as an example to explain that.展开更多
文摘In this paper, we discuss a mathematical model of malaria transmission between vector and host population. We study the basic qualitative properties of the model, the boundedness and non-negativity, calculate all equilibria, and prove the global stability of them and the behaviour of the model when the basic reproduction ratio R0 is greater than one or less than one. The global stability of equilibria is established by using Lyapunov method. Graphical representations of the calculated parameters and their effects on disease eradication are provided.
基金Specialized Research Fund for the Doctoral Program of Higher Education ( No. 20090092110051)the Key Project of Chinese Ministry of Education ( No. 108060)the National Natural Science Foundation of China ( No. 51076027, 51036002, 51106024)
文摘An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.
基金Research supported by the National Natural Science Foundation of China(12271220)postgraduate research and practice innovation program of Jiangsu Province(KYCX24-3010)。
文摘Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.
文摘In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.
文摘A p-Laplacian ( p > 2 ) reaction-diffusion system on weighted graphs is introduced to a networked SIR epidemic model. After overcoming difficulties caused by the nonlinear p-Laplacian, we show that the endemic equilibrium is globally asymptotically stable if the basic reproduction number r<sub>0</sub> is greater than 1, while the disease-free equilibrium is globally asymptotically stable if r<sub>0</sub> is lower than 1. We extend the stability results of SIR models with graph Laplacian ( p = 2 ) to general graph p-Laplacian.
文摘To investigate the effects of self-memory diffusion on predator-prey models, we consider a predator-prey model with Bazykin functional response of self- memory diffusion. The uniqueness, boundedness, positivity, existence and stability of equilibrium point of the model are studied. In this paper, the uniqueness of the solution is discussed under the non-negative initial function and Neumann boundary conditions satisfying a specific space. The boundness of the solution is proved by the comparison principle of parabolic equations, and the positivity of the solution is proved by the strong maximum principle of parabolic equations. Hurwitz criterion and Lyapunov function construction are used to analyze the local stability and global stability of feasible equilibrium points. The results show that the system solution is unique non-negative and bounded. The model is unstable at the trivial equilibrium point E0 and the boundary equilibrium point E1, and the condition of whether the positive equilibrium point E2 is stable under certain conditions is given.
文摘This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of “set-valued derivative” of vector Lyapunov functions is introduced, some generalized comparison principles on discontinuous systems are shown. Furthermore, Lyapunov stability theory is developed for a class of discontinuous systems based on locally Lipschitz continuous and regular vector Lyapunov functions.
文摘In this paper, we considered a homogeneous reaction-diffusion predator-prey system with Holling type II functional response subject to Neumann boundary conditions. Some new sufficient conditions were analytically established to ensure that this system has globally asymptotically stable equilibria and Hopf bifurcation surrounding interior equilibrium. In the analysis of Hopf bifurcation, based on the phenomenon of Turing instability and well-done conditions, the system undergoes a Hopf bifurcation and an example incorporating with numerical simulations to support the existence of Hopf bifurcation is presented. We also derived a useful algorithm for determining direction of Hopf bifurcation and stability of bifurcating periodic solutions correspond to j ≠0 and j = 0, respectively. Finally, all these theoretical results are expected to be useful in the future study of dynamical complexity of ecological environment.
基金Supported by the National Natural Science Foundation of China(195 310 70 )
文摘This paper deals with the questio n of global stability of the positive locally asymptotically stable equilibrium in a class of predator\|prey system of Gause\|typ e with Holling Ⅲ functional response. The Dulac's criterion is applied and lia punov functions are constructed to establish the global stability.
文摘This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types of a common quadratic Lyapunov function and an ellipsoid.These classical results require either the quadratic Lyapunov function or the employed ellipsoid to be of the centralized type.In some cases,the ellipsoids are defined dependently as the level sets of a decentralized Lyapunov function.In this paper,we extend the existing results by the simultaneous use of a general decentralized Lyapunov function and a decentralized ellipsoid parameterized independently.The proposed conditions provide less conservative results than existing works in the sense of the ultimate invariant set of attraction size.Two different approaches are proposed to extract the ultimate invariant set of attraction with a minimum size,i.e.,a purely numerical method and a numerical-analytical one.In the former,both invariant and attractiveness conditions are imposed to extract the final set of matrix inequalities.The latter is established on a principle that the attractiveness of a set implies its invariance.Thus,the stability conditions are derived based on only the attractiveness property as a set of matrix inequalities with a smaller dimension.Illustrative examples are presented to prove the satisfactory operation of the proposed stabilization methods.
文摘For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.
基金Supported by the National Natural Science Foundation of China(No.61572254,61301103)
文摘With the occurrence of burst interference,bit error rate( BER) stability of the wireless communication system( WCS) always degrades significantly. To cope with it,a stability control algorithm is proposed,utilizing the stability theory of switched systems,which is specifically applicable for multi-parameter adaptive WCS with spectrum sensing ability,and it is capable of stabilizing BER within a reasonable range. Firstly,WCS is modeled as a switched system. Then,based on the multi-Lyapunov function,controlling rules are presented to enable the switched system to satisfy stable condition asymptotically. Finally,analysis and numerical simulation results demonstrate that the switched WCS with the proposed controlling rules is superior to conventional power-controlled WCS with or without state feedback control in terms of stability performance.
文摘This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.
基金Project (60425310) supported by the National Science Foundation of China project (2001AA4422200) supported by theTeaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Ministry of Education of China
文摘A design method for controllers and a comprehensive stability analysis for an acrobat based on Lyapunov functions are presented. Three control laws based on three Lyapunov functions are designed to increase the energy so as to move the acrobot into the unstable inverted equilibrium position, and solve the problem of posture and energy. The concept of a non-smooth Lyapunov function is employed to analyze the stability of the whole system. The validity of this strategy is demonstrated by simulations.
基金supported by the National Natural Science Foundation of China (6090405161021002)
文摘The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.
基金This work is supported by the National Sciences Foundation of China (10471040)the Youth Science Foundations of Shanxi Province (20021003).
文摘In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.
文摘A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derived for the global asymptotic stability of the positive solutions of the system. As a corollary, it is shown that the global asymptotic stability of the positive solution is maintained provided that the delayed negative feedbacks dominate other interspecific interaction effects with delays and the delays are sufficiently small.
基金supported by Scientific Research(c),No.24540219 of Japan Society for the Promotion of Sciencesupported by Grant-in-Aid for Research Activity Start-up,No.25887011 of Japan Society for the Promotion of Science
文摘In this paper, we establish new sufficient conditions for the infected equilibrium of a nonresident computer virus model to be globally asymptotically stable. Our results extend two kind of known results in recent literature.
基金supported in part by JSPS Fellows,No.237213 of Japan Society for the Promotion of Science to the first authorthe Grant MTM2010-18318 of the MICINN,Spanish Ministry of Science and Innovation to the second authorScientific Research (c),No.21540230 of Japan Society for the Promotion of Science to the third author
文摘In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.
文摘In this paper, we study a kind of the delayed SEIQR infectious disease model with the quarantine and latent, and get the threshold value which determines the global dynamics and the outcome of the disease. The model has a disease-free equilibrium which is unstable when the basic reproduction number is greater than unity. At the same time, it has a unique endemic equilibrium when the basic reproduction number is greater than unity. According to the mathematical dynamics analysis, we show that disease-free equilibrium and endemic equilibrium are locally asymptotically stable by using Hurwitz criterion and they are globally asymptotically stable by using suitable Lyapunov functions for any Besides, the SEIQR model with nonlinear incidence rate is studied, and the that the basic reproduction number is a unity can be found out. Finally, numerical simulations are performed to illustrate and verify the conclusions that will be useful for us to control the spread of infectious diseases. Meanwhile, the will effect changing trends of in system (1), which is obvious in simulations. Here, we take as an example to explain that.