In this paper, new delay-dependent stability criteria for asymptotic stability of neural networks with time-varying delays are derived. The stability conditions are represented in terms of linear matrix inequalities ...In this paper, new delay-dependent stability criteria for asymptotic stability of neural networks with time-varying delays are derived. The stability conditions are represented in terms of linear matrix inequalities (LMIs) by constructing new Lyapunov-Krasovskii functional. The proposed functional has an augmented quadratic form with states as well as the nonlinear function to consider the sector and the slope constraints. The less conservativeness of the proposed stability criteria can be guaranteed by using convex properties of the nonlinear function which satisfies the sector and slope bound. Numerical examples are presented to show the effectiveness of the proposed method.展开更多
This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.S...This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given.展开更多
In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The eff...In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent(NLLE)and signal-to-noise ratio methods using a coupled Lorenz model.The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings,therefore,it can quantify the predictability limit induced by the external forcings.On this basis,a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields.The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method.This similarity supports ENSO as the major predictable signal for weather and climate prediction.In addition,a ratio of predictability limit(RPL)calculated by the CNLLE method to that calculated by the NLLE method was proposed.The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit.For instance,ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months,as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean.Moreover,the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.展开更多
In order to analyze power system stability in environment of WAMS(wide area measurement system),a new steady state stability model with time-varying delay was proposed for power system.The factors of exciter and power...In order to analyze power system stability in environment of WAMS(wide area measurement system),a new steady state stability model with time-varying delay was proposed for power system.The factors of exciter and power system stabilizer with delay were introduced into analytical model.To decrease conservativeness of stability analysis,an improved Lyapunov-Krasovskii functional was constructed,and then a new delay-dependent steady state stability criterion for power system,which overcomes the disadvantages of eigenvalue computation method,was derived.The proposed model and criterion were tested on synchronous-machine infinite-bus power system.The test results demonstrate that Lyapunov-Krasovskii functional based power system stability analysis method is applicable and effective in the analysis of time delay power system stability.展开更多
基金Project supported by the Daegu University Research Grant,2009
文摘In this paper, new delay-dependent stability criteria for asymptotic stability of neural networks with time-varying delays are derived. The stability conditions are represented in terms of linear matrix inequalities (LMIs) by constructing new Lyapunov-Krasovskii functional. The proposed functional has an augmented quadratic form with states as well as the nonlinear function to consider the sector and the slope constraints. The less conservativeness of the proposed stability criteria can be guaranteed by using convex properties of the nonlinear function which satisfies the sector and slope bound. Numerical examples are presented to show the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant No.62176140)。
文摘This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given.
基金supported by the National Natural Science Foundation of China(Grant Nos.42225501 and 42105059)the National Key Scientific and Tech-nological Infrastructure project“Earth System Numerical Simula-tion Facility”(EarthLab).
文摘In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent(NLLE)and signal-to-noise ratio methods using a coupled Lorenz model.The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings,therefore,it can quantify the predictability limit induced by the external forcings.On this basis,a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields.The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method.This similarity supports ENSO as the major predictable signal for weather and climate prediction.In addition,a ratio of predictability limit(RPL)calculated by the CNLLE method to that calculated by the NLLE method was proposed.The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit.For instance,ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months,as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean.Moreover,the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.
基金Projects(60425310,60974026) supported by the National Natural Science Foundation of ChinaProject(200805330004) supported by the Doctor Subject Foundation of China+1 种基金Projects(NCET-06-0679) supported by Program for New Century Excellent Talents in UniversityProject(08JJ1010) supported by the Natural Science Foundation of Hunan Province,China
文摘In order to analyze power system stability in environment of WAMS(wide area measurement system),a new steady state stability model with time-varying delay was proposed for power system.The factors of exciter and power system stabilizer with delay were introduced into analytical model.To decrease conservativeness of stability analysis,an improved Lyapunov-Krasovskii functional was constructed,and then a new delay-dependent steady state stability criterion for power system,which overcomes the disadvantages of eigenvalue computation method,was derived.The proposed model and criterion were tested on synchronous-machine infinite-bus power system.The test results demonstrate that Lyapunov-Krasovskii functional based power system stability analysis method is applicable and effective in the analysis of time delay power system stability.