For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic des...For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.展开更多
The stability of the motion control system is one of the decisive factors of the control quality for Autonomous Underwater Vehicle(AUV).The divergence of control,which the unstable system may be brought about,is fat...The stability of the motion control system is one of the decisive factors of the control quality for Autonomous Underwater Vehicle(AUV).The divergence of control,which the unstable system may be brought about,is fatal to the operation of AUV.The stability analysis of the PD and S-surface speed controllers based on the Lyapunov's direct method is proposed in this paper.After decoupling the six degree-of-freedom(DOF)motions of the AUV,the axial dynamic behavior is discussed and the condition is deduced,in which the parameters selection within stability domain can guarantee the system asymptotically stable.The experimental results in a tank and on the sea have successfully verified the algorithm reliability,which can be served as a good reference for analyzing other AUV nonlinear control systems.展开更多
Helical equilibrium of a thin elastic rod has practical backgrounds, such as DNA, fiber, sub-ocean cable, and oil-well drill string. Kirchhoff's kinetic analogy is an effective approach to the stability analysis of e...Helical equilibrium of a thin elastic rod has practical backgrounds, such as DNA, fiber, sub-ocean cable, and oil-well drill string. Kirchhoff's kinetic analogy is an effective approach to the stability analysis of equilibrium of a thin elastic rod. The main hypotheses of Kirchhoff's theory without the extension of the centerline and the shear deformation of the cross section are not adoptable to real soft materials of biological fibers. In this paper, the dynamic equations of a rod with a circular cross section are established on the basis of the exact Cosserat model by considering the tension and the shear deformations. Euler's angles are applied as the attitude representation of the cross section. The deviation of the normal axis of the cross section from the tangent of the centerline is considered as the result of the shear deformation. Lyapunov's stability of the helical equilibrium is discussed in static category. Euler's critical values of axial force and torque are obtained. Lyapunov's and Euler's stability conditions in the space domain are the necessary conditions of Lyapunov's stability of the helical rod in the time domain.展开更多
In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given...In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given to demonstrate the advantage of the obtained results.展开更多
Sufficient condition for stochastic unifrom stability of a neutral stochastic functional differential equation is given, especially, new techniques are developed to cope with the neutral delay case, we obtained the su...Sufficient condition for stochastic unifrom stability of a neutral stochastic functional differential equation is given, especially, new techniques are developed to cope with the neutral delay case, we obtained the sufficient condition for asymptotic stability of neutral stochastic differential delay equations. Due to the new techniques developed in this paper, the results obtained arc very general and useful. The theory developed here gives a unified treatment for various asymptotic estimates e.g. exponential and polynomial bounds.展开更多
In this paper, we present a new sufficient condition for absolute stability of Lure system with two additive time-varying delay components. This criterion is expressed as a set of linear matrix inequalities (LMIs), ...In this paper, we present a new sufficient condition for absolute stability of Lure system with two additive time-varying delay components. This criterion is expressed as a set of linear matrix inequalities (LMIs), which can be readily tested by using standard numerical software. We use this new criterion to stabilize a class of nonlinear time-delay systems. Some numerical examples are given to illustrate the applicability of the results using standard numerical software.展开更多
Delay-dependent robust stability of cellular neural networks with time-varying discrete and distributed time-varying delays is considered. Based on Lyapunov stability theory and the linear matrix inequality (LMIs) t...Delay-dependent robust stability of cellular neural networks with time-varying discrete and distributed time-varying delays is considered. Based on Lyapunov stability theory and the linear matrix inequality (LMIs) technique, delay-dependent stability criteria are derived in terms of LMIs avoiding bounding certain cross terms, which often leads to conservatism. The effectiveness of the proposed stability criteria and the improvement over the existing results are illustrated in the numerical examples.展开更多
We study the stability analysis and control synthesis of uncertain discrete-time two-dimensional(2D) systems.The mathematical model of the discrete-time 2D system is established upon the well-known Roesser model,and...We study the stability analysis and control synthesis of uncertain discrete-time two-dimensional(2D) systems.The mathematical model of the discrete-time 2D system is established upon the well-known Roesser model,and the uncertainty phenomenon,which appears typically in practical environments,is modeled by a convex bounded(polytope type) uncertain domain.The stability analysis and control synthesis of uncertain discrete-time 2D systems are then developed by applying the Lyapunov stability theory.In the processes of stability analysis and control synthesis,the obtained stability/stabilzaition conditions become less conservative by applying some novel relaxed techniques.Moreover,the obtained results are formulated in the form of linear matrix inequalities,which can be easily solved via standard numerical software.Finally,numerical examples are given to demonstrate the effectiveness of the obtained results.展开更多
In this paper, we present a model of stochastic swarm system and prove the stability of this kind of systems. We establish the stable aggregating behavior for the group using a coordination control scheme. This indivi...In this paper, we present a model of stochastic swarm system and prove the stability of this kind of systems. We establish the stable aggregating behavior for the group using a coordination control scheme. This individual-based control scheme is a combination of attractive and repulsive interactions among the individuals in the group, which ensures the cohesion of the group and collision avoidance among the individuals. The dynamics of each individual depends on the relative positions between the individuals and the influences of the random disturbances. Under the influences of the noises, this position-based control strategy still generates the stable aggregating behavior harmoniously for the group and the self-organized swarm pattern is formed.展开更多
We report some new results associated with the synchronization behavior of two coupled double-well Duffing oscillators (DDOs). Some sufficient algebraic criteria for global chaos synchronization of the drive and res...We report some new results associated with the synchronization behavior of two coupled double-well Duffing oscillators (DDOs). Some sufficient algebraic criteria for global chaos synchronization of the drive and response DDOs via linear state error feedback control are obtained by means of Lyapunov stability theory. The synchronization is achieved through a bistable state in which a periodic attractor co-exists with a chaotic attractor. Using the linear perturbation analysis, the prevalence of attractors in parameter space and the associated bifurcations are examined. Subcritical and supercritical Hopf bifurcations and abundance of Arnold tongues -- a signature of mode locking phenomenon are found.展开更多
The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal over...The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.展开更多
This paper focuses on studying the problem of robust output practical stability of timevarying nonlinear control systems. The main innovation lies in the fact that the proposed approach for stability analysis allows f...This paper focuses on studying the problem of robust output practical stability of timevarying nonlinear control systems. The main innovation lies in the fact that the proposed approach for stability analysis allows for the computation of bounds that characterize the asymptotic convergence of solutions to a small ball centered at the origin using a Lyapunov method with a definite derivative.Under different conditions on the perturbation, the authors demonstrate that the system can be globally robustly asymptotically output stable by designing a candidate feedback controller. Finally, three examples are given to illustrate the practical implications and significance of the theoretical results.展开更多
The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous contr...The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.展开更多
To address the challenge of achieving unified control across diverse nonlinear systems, a comprehensive control theory spanning from PID (Proportional-Integral-Derivative) to ACPID (Auto-Coupling PID) has been propose...To address the challenge of achieving unified control across diverse nonlinear systems, a comprehensive control theory spanning from PID (Proportional-Integral-Derivative) to ACPID (Auto-Coupling PID) has been proposed. The primary concept is to unify all intricate factors, including internal dynamics and external bounded disturbance, into a single total disturbance. This enables the mapping of various nonlinear systems onto a linear disturbance system. Based on the theory of PID control and the characteristic equation of a critically damping system, Zeng’s stabilization rules (ZSR) and an ACPID control force based on a single speed factor have been designed. ACPID control theory is both simple and practical, with significant scientific significance and application value in the field of control engineering.展开更多
文摘For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.
基金supported by the National High Technology Development Program of China(863Program,Grant No.2008AA092301)the Fundamental Research Foundation of Harbin Engineering University(Grant No.HEUFT08001)the Postdoctoral Science Foundation of China(Grant No.20080440838)
文摘The stability of the motion control system is one of the decisive factors of the control quality for Autonomous Underwater Vehicle(AUV).The divergence of control,which the unstable system may be brought about,is fatal to the operation of AUV.The stability analysis of the PD and S-surface speed controllers based on the Lyapunov's direct method is proposed in this paper.After decoupling the six degree-of-freedom(DOF)motions of the AUV,the axial dynamic behavior is discussed and the condition is deduced,in which the parameters selection within stability domain can guarantee the system asymptotically stable.The experimental results in a tank and on the sea have successfully verified the algorithm reliability,which can be served as a good reference for analyzing other AUV nonlinear control systems.
基金supported by the National Natural Science Fundation of China(No.10972143)
文摘Helical equilibrium of a thin elastic rod has practical backgrounds, such as DNA, fiber, sub-ocean cable, and oil-well drill string. Kirchhoff's kinetic analogy is an effective approach to the stability analysis of equilibrium of a thin elastic rod. The main hypotheses of Kirchhoff's theory without the extension of the centerline and the shear deformation of the cross section are not adoptable to real soft materials of biological fibers. In this paper, the dynamic equations of a rod with a circular cross section are established on the basis of the exact Cosserat model by considering the tension and the shear deformations. Euler's angles are applied as the attitude representation of the cross section. The deviation of the normal axis of the cross section from the tangent of the centerline is considered as the result of the shear deformation. Lyapunov's stability of the helical equilibrium is discussed in static category. Euler's critical values of axial force and torque are obtained. Lyapunov's and Euler's stability conditions in the space domain are the necessary conditions of Lyapunov's stability of the helical rod in the time domain.
基金supported by the National Natural Science Foundation of China (No. 10871063)Scientific Research Fund of Hunan Provincial Education Department (No. 07A038)
文摘In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given to demonstrate the advantage of the obtained results.
基金Supported by the National Natural Science Founda-tion of China (19531070) and the Major Project Foundation of HubeiProvince Education Department (2004Z001)
文摘Sufficient condition for stochastic unifrom stability of a neutral stochastic functional differential equation is given, especially, new techniques are developed to cope with the neutral delay case, we obtained the sufficient condition for asymptotic stability of neutral stochastic differential delay equations. Due to the new techniques developed in this paper, the results obtained arc very general and useful. The theory developed here gives a unified treatment for various asymptotic estimates e.g. exponential and polynomial bounds.
文摘In this paper, we present a new sufficient condition for absolute stability of Lure system with two additive time-varying delay components. This criterion is expressed as a set of linear matrix inequalities (LMIs), which can be readily tested by using standard numerical software. We use this new criterion to stabilize a class of nonlinear time-delay systems. Some numerical examples are given to illustrate the applicability of the results using standard numerical software.
文摘Delay-dependent robust stability of cellular neural networks with time-varying discrete and distributed time-varying delays is considered. Based on Lyapunov stability theory and the linear matrix inequality (LMIs) technique, delay-dependent stability criteria are derived in terms of LMIs avoiding bounding certain cross terms, which often leads to conservatism. The effectiveness of the proposed stability criteria and the improvement over the existing results are illustrated in the numerical examples.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61104010)
文摘We study the stability analysis and control synthesis of uncertain discrete-time two-dimensional(2D) systems.The mathematical model of the discrete-time 2D system is established upon the well-known Roesser model,and the uncertainty phenomenon,which appears typically in practical environments,is modeled by a convex bounded(polytope type) uncertain domain.The stability analysis and control synthesis of uncertain discrete-time 2D systems are then developed by applying the Lyapunov stability theory.In the processes of stability analysis and control synthesis,the obtained stability/stabilzaition conditions become less conservative by applying some novel relaxed techniques.Moreover,the obtained results are formulated in the form of linear matrix inequalities,which can be easily solved via standard numerical software.Finally,numerical examples are given to demonstrate the effectiveness of the obtained results.
基金Supported by the National Natural Science Foundation of China (60574088, 60274014)
文摘In this paper, we present a model of stochastic swarm system and prove the stability of this kind of systems. We establish the stable aggregating behavior for the group using a coordination control scheme. This individual-based control scheme is a combination of attractive and repulsive interactions among the individuals in the group, which ensures the cohesion of the group and collision avoidance among the individuals. The dynamics of each individual depends on the relative positions between the individuals and the influences of the random disturbances. Under the influences of the noises, this position-based control strategy still generates the stable aggregating behavior harmoniously for the group and the self-organized swarm pattern is formed.
基金supported by a fellowship of the Alexander von Humboldt Foundation in Bonn, Germanythe Royal Society of London, British Academy and Physical Sciences Research Council, UK, under the Newton International Fellowship scheme.
文摘We report some new results associated with the synchronization behavior of two coupled double-well Duffing oscillators (DDOs). Some sufficient algebraic criteria for global chaos synchronization of the drive and response DDOs via linear state error feedback control are obtained by means of Lyapunov stability theory. The synchronization is achieved through a bistable state in which a periodic attractor co-exists with a chaotic attractor. Using the linear perturbation analysis, the prevalence of attractors in parameter space and the associated bifurcations are examined. Subcritical and supercritical Hopf bifurcations and abundance of Arnold tongues -- a signature of mode locking phenomenon are found.
基金supported in part by the Scientific Research Project of Heilongjiang Province Education Bureau(12541200)
文摘The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.
文摘This paper focuses on studying the problem of robust output practical stability of timevarying nonlinear control systems. The main innovation lies in the fact that the proposed approach for stability analysis allows for the computation of bounds that characterize the asymptotic convergence of solutions to a small ball centered at the origin using a Lyapunov method with a definite derivative.Under different conditions on the perturbation, the authors demonstrate that the system can be globally robustly asymptotically output stable by designing a candidate feedback controller. Finally, three examples are given to illustrate the practical implications and significance of the theoretical results.
文摘The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.
文摘To address the challenge of achieving unified control across diverse nonlinear systems, a comprehensive control theory spanning from PID (Proportional-Integral-Derivative) to ACPID (Auto-Coupling PID) has been proposed. The primary concept is to unify all intricate factors, including internal dynamics and external bounded disturbance, into a single total disturbance. This enables the mapping of various nonlinear systems onto a linear disturbance system. Based on the theory of PID control and the characteristic equation of a critically damping system, Zeng’s stabilization rules (ZSR) and an ACPID control force based on a single speed factor have been designed. ACPID control theory is both simple and practical, with significant scientific significance and application value in the field of control engineering.