利用Melnikov方法,分析了含有5次方恢复系数项的Φ6-Duffing-van der Pol振子系统在单势阱参数条件下产生Smale意义下的混沌的必要条件.通过Poincar啨截面图、分岔图、Lyapunov指数谱和Lyapunov维数等理论和数值方法,阐明了系统运动在...利用Melnikov方法,分析了含有5次方恢复系数项的Φ6-Duffing-van der Pol振子系统在单势阱参数条件下产生Smale意义下的混沌的必要条件.通过Poincar啨截面图、分岔图、Lyapunov指数谱和Lyapunov维数等理论和数值方法,阐明了系统运动在单势阱参数下随周期激励信号变化的动态特性、复杂性和系统的非线性特征.展开更多
The robust admissibility analysis of a class of uncertain discrete-time switched linear singular(SLS) systems for arbitrary switching laws is addressed. The parameter uncertainty is assumed to be norm-bounded. First...The robust admissibility analysis of a class of uncertain discrete-time switched linear singular(SLS) systems for arbitrary switching laws is addressed. The parameter uncertainty is assumed to be norm-bounded. First, by using the switched Lyapunov function approach, some new sufficient conditions ensuring the nominal discrete-time SLS system to be regular, casual and asymptotically stable for arbitrary switching laws are derived in terms of linear matrix inequalities. Then, the robust admissibility condition for the uncertain discrete-time SLS systems is presented. The obtained results can be viewed as an extension of previous works on the switched Lyapunov function approach from the regular switched linear systems to the switched linear singular cases. Numerical examples show the reduced conservatism and effectiveness of the proposed conditions.展开更多
An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local ...An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.展开更多
Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter...Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.展开更多
Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus th...Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis.展开更多
It was shown that active queue management schemes implemented in the routers of communication networks sup-porting transmission control protocol (TCP) flows can be modelled as a feedback control system. In this paper ...It was shown that active queue management schemes implemented in the routers of communication networks sup-porting transmission control protocol (TCP) flows can be modelled as a feedback control system. In this paper based on Lyapunov function we developed an optimal controller to improve active queue management (AQM) router’s stability and response time, which are often in conflict with each other in system performance. Ns-2 simulations showed that optimal controller outperforms PI controller significantly.展开更多
According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are comput...According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting.展开更多
To improve the detection accuracy of the balise uplink signal transmitted in a strong noise environment,we use chaotic oscillator to detect the balise uplink signal based on the characteristics of the chaotic system t...To improve the detection accuracy of the balise uplink signal transmitted in a strong noise environment,we use chaotic oscillator to detect the balise uplink signal based on the characteristics of the chaotic system that is sensitive to initial conditions and immune to noise.Combining with the principle of Duffing oscillator system used in weak signal detection and uplink signal feature,the methods and steps of using Duffing oscillator to detect the balise signal are presented.Furthermore,the Lyapunov exponent algorithm is used to calculate the critical threshold of the Duffing oscillator detection system.Thus,the output states of the system can be quantitatively judged to achieve demodulation of the balise signal.The simulation results show that the chaotic oscillator detection method for balise signal based on Lyapunov exponent algorithm not only improves the accuracy and efficiency of threshold setting,but also ensures the reliability of balise signal detection.展开更多
The quasi-biweekly oscillation (QBWO) is a major intraseasonal variability (ISV) in the tropics. Based on bandpass-filtered outgoing longwave radiation (OLR) and wind field data, the predictability limits of the QBWO ...The quasi-biweekly oscillation (QBWO) is a major intraseasonal variability (ISV) in the tropics. Based on bandpass-filtered outgoing longwave radiation (OLR) and wind field data, the predictability limits of the QBWO in boreal summer and boreal winter are investigated using the nonlinear local Lyapunov exponent (NLLE) approach The analysis shows that the evolution of the mean error growth of the QBWO in boreal summer and the evolution of the mean error growth in boreal winter are comparable Both curves exhibit rapid growth in the initial stage followed by a slowly fluctuating, ascending trend before saturation is reached. As a result, the potential predictability limits for the boreal summer QBWO are very close to those for the boreal winter QBWO, with a lead time of approximately three weeks. Given the current limitations in the simulation and prediction of ISV, including the QBWO, the results of this study provide a useful reference for assessing the predictability of the QBWO using model simulations.展开更多
The techniques to forecast available parking space(APS) are indispensable components for parking guidance systems(PGS). According to the data collected in Newcastle upon Tyne, England, the changing characteristics of ...The techniques to forecast available parking space(APS) are indispensable components for parking guidance systems(PGS). According to the data collected in Newcastle upon Tyne, England, the changing characteristics of APS were studied. Thereafter, aiming to build up a multi-step APS forecasting model that provides richer information than a conventional one-step model, the largest Lyapunov exponents(largest LEs) method was introduced into PGS. By experimental tests conducted using the same dataset, its prediction performance was compared with traditional wavelet neural network(WNN) method in both one-step and multi-step processes. Based on the results, a new multi-step forecasting model called WNN-LE method was proposed, where WNN, which enjoys a more accurate performance along with a better learning ability in short-term forecasting, was applied in the early forecast steps while the Lyapunov exponent prediction method in the latter steps precisely reflect the chaotic feature in latter forecast period. The MSE of APS forecasting for one hour time period can be reduced from 83.1 to 27.1(in a parking building with 492 berths) by using largest LEs method instead of WNN and further reduced to 19.0 by conducted the new method.展开更多
An improved algorithm for calculating the largest Lyapunov exponents (λ1) is presented based on Kantz algorithm. The presented algorithm can select a neighborhood in a certain extent according to the variety of the c...An improved algorithm for calculating the largest Lyapunov exponents (λ1) is presented based on Kantz algorithm. The presented algorithm can select a neighborhood in a certain extent according to the variety of the curves for calculating the largest Lyapunov exponent. And it can determine the linear zone based on the curves where branch is generated, thus, the largest Lyapunov exponent is obtained. The numerical experiments for the Hénon map prove that the proposed method is a direct method to identify whether a linear envelope to the curves exists in distinguishing chaos from noise, and it is superior to the Kantz algorithm.展开更多
In this paper we consider general nonlinear switching systems. Under an additional assumption, we prove that there exists a state space depending switching rule which stabilizes the system in a very general sense.
A chaotic dynamical system is characterized by a positive averaged exponential separation of two neighboring tra- jectories over a chaotic attractor. Knowledge of the Largest Lyapunov Exponent λ1 of a dynamical syste...A chaotic dynamical system is characterized by a positive averaged exponential separation of two neighboring tra- jectories over a chaotic attractor. Knowledge of the Largest Lyapunov Exponent λ1 of a dynamical system over a bounded attractor is necessary and sufficient for determining whether it is chaotic (λ1>0) or not (λ1≤0). We intended in this work to elaborate the connection between Local Lyapunov Exponents and the Largest Lyapunov Exponent where an alternative method to calculate λ1 has emerged. Finally, we investigated some characteristics of the fixed points and periodic orbits embedded within a chaotic attractor which led to the conclusion of the existence of chaotic attractors that may not embed in any fixed point or periodic orbit within it.展开更多
The nonlinear local Lyapunov exponent(NLLE) can be used as a quantification of the local predictability limit of chaotic systems. In this study, the phase-spatial structure of the local predictability limit over the...The nonlinear local Lyapunov exponent(NLLE) can be used as a quantification of the local predictability limit of chaotic systems. In this study, the phase-spatial structure of the local predictability limit over the Lorenz-63 system is investigated. It is found that the inner and outer rims of each regime of the attractor have a high probability of a longer than average local predictability limit, while the center part is the opposite. However, the distribution of the local predictability limit is nonuniformly organized, with adjacent points sometimes showing quite distinct error growth.The source of local predictability is linked to the local dynamics, which is related to the region in the phase space and the duration on the current regime.展开更多
文摘利用Melnikov方法,分析了含有5次方恢复系数项的Φ6-Duffing-van der Pol振子系统在单势阱参数条件下产生Smale意义下的混沌的必要条件.通过Poincar啨截面图、分岔图、Lyapunov指数谱和Lyapunov维数等理论和数值方法,阐明了系统运动在单势阱参数下随周期激励信号变化的动态特性、复杂性和系统的非线性特征.
基金The National Natural Science Foundation of China(No.60835001)the Key Project of Ministry of Education of China (No.108060)
文摘The robust admissibility analysis of a class of uncertain discrete-time switched linear singular(SLS) systems for arbitrary switching laws is addressed. The parameter uncertainty is assumed to be norm-bounded. First, by using the switched Lyapunov function approach, some new sufficient conditions ensuring the nominal discrete-time SLS system to be regular, casual and asymptotically stable for arbitrary switching laws are derived in terms of linear matrix inequalities. Then, the robust admissibility condition for the uncertain discrete-time SLS systems is presented. The obtained results can be viewed as an extension of previous works on the switched Lyapunov function approach from the regular switched linear systems to the switched linear singular cases. Numerical examples show the reduced conservatism and effectiveness of the proposed conditions.
基金Specialized Research Fund for the Doctoral Program of Higher Education ( No. 20090092110051)the Key Project of Chinese Ministry of Education ( No. 108060)the National Natural Science Foundation of China ( No. 51076027, 51036002, 51106024)
文摘An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.
基金Research supported by the National Natural Science Foundation of China(12271220)postgraduate research and practice innovation program of Jiangsu Province(KYCX24-3010)。
文摘Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.
基金Projects(61227006,61473206) supported by the National Natural Science Foundation of ChinaProject(13TXSYJC40200) supported by Science and Technology Innovation of Tianjin,China
文摘Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis.
文摘It was shown that active queue management schemes implemented in the routers of communication networks sup-porting transmission control protocol (TCP) flows can be modelled as a feedback control system. In this paper based on Lyapunov function we developed an optimal controller to improve active queue management (AQM) router’s stability and response time, which are often in conflict with each other in system performance. Ns-2 simulations showed that optimal controller outperforms PI controller significantly.
基金Project(70671039) supported by the National Natural Science Foundation of China
文摘According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting.
基金National Natural Science Foundation of China(No.61763025)。
文摘To improve the detection accuracy of the balise uplink signal transmitted in a strong noise environment,we use chaotic oscillator to detect the balise uplink signal based on the characteristics of the chaotic system that is sensitive to initial conditions and immune to noise.Combining with the principle of Duffing oscillator system used in weak signal detection and uplink signal feature,the methods and steps of using Duffing oscillator to detect the balise signal are presented.Furthermore,the Lyapunov exponent algorithm is used to calculate the critical threshold of the Duffing oscillator detection system.Thus,the output states of the system can be quantitatively judged to achieve demodulation of the balise signal.The simulation results show that the chaotic oscillator detection method for balise signal based on Lyapunov exponent algorithm not only improves the accuracy and efficiency of threshold setting,but also ensures the reliability of balise signal detection.
基金funded by the National Natural Science Foundation of China (41175069)the National Basic Research Program of China (973 program, 2010CB950400)
文摘The quasi-biweekly oscillation (QBWO) is a major intraseasonal variability (ISV) in the tropics. Based on bandpass-filtered outgoing longwave radiation (OLR) and wind field data, the predictability limits of the QBWO in boreal summer and boreal winter are investigated using the nonlinear local Lyapunov exponent (NLLE) approach The analysis shows that the evolution of the mean error growth of the QBWO in boreal summer and the evolution of the mean error growth in boreal winter are comparable Both curves exhibit rapid growth in the initial stage followed by a slowly fluctuating, ascending trend before saturation is reached. As a result, the potential predictability limits for the boreal summer QBWO are very close to those for the boreal winter QBWO, with a lead time of approximately three weeks. Given the current limitations in the simulation and prediction of ISV, including the QBWO, the results of this study provide a useful reference for assessing the predictability of the QBWO using model simulations.
基金Project(2012CB725402)supported by the National Key Basic Research Program of ChinaProjects(51338003,50908051)supported by the National Natural Science Foundation of China
文摘The techniques to forecast available parking space(APS) are indispensable components for parking guidance systems(PGS). According to the data collected in Newcastle upon Tyne, England, the changing characteristics of APS were studied. Thereafter, aiming to build up a multi-step APS forecasting model that provides richer information than a conventional one-step model, the largest Lyapunov exponents(largest LEs) method was introduced into PGS. By experimental tests conducted using the same dataset, its prediction performance was compared with traditional wavelet neural network(WNN) method in both one-step and multi-step processes. Based on the results, a new multi-step forecasting model called WNN-LE method was proposed, where WNN, which enjoys a more accurate performance along with a better learning ability in short-term forecasting, was applied in the early forecast steps while the Lyapunov exponent prediction method in the latter steps precisely reflect the chaotic feature in latter forecast period. The MSE of APS forecasting for one hour time period can be reduced from 83.1 to 27.1(in a parking building with 492 berths) by using largest LEs method instead of WNN and further reduced to 19.0 by conducted the new method.
文摘An improved algorithm for calculating the largest Lyapunov exponents (λ1) is presented based on Kantz algorithm. The presented algorithm can select a neighborhood in a certain extent according to the variety of the curves for calculating the largest Lyapunov exponent. And it can determine the linear zone based on the curves where branch is generated, thus, the largest Lyapunov exponent is obtained. The numerical experiments for the Hénon map prove that the proposed method is a direct method to identify whether a linear envelope to the curves exists in distinguishing chaos from noise, and it is superior to the Kantz algorithm.
基金Supported by the NSF of Commission of Education of Henan Province(200510459002)
文摘In this paper we consider general nonlinear switching systems. Under an additional assumption, we prove that there exists a state space depending switching rule which stabilizes the system in a very general sense.
文摘A chaotic dynamical system is characterized by a positive averaged exponential separation of two neighboring tra- jectories over a chaotic attractor. Knowledge of the Largest Lyapunov Exponent λ1 of a dynamical system over a bounded attractor is necessary and sufficient for determining whether it is chaotic (λ1>0) or not (λ1≤0). We intended in this work to elaborate the connection between Local Lyapunov Exponents and the Largest Lyapunov Exponent where an alternative method to calculate λ1 has emerged. Finally, we investigated some characteristics of the fixed points and periodic orbits embedded within a chaotic attractor which led to the conclusion of the existence of chaotic attractors that may not embed in any fixed point or periodic orbit within it.
基金supported by the National Natural Science Foundation of China[grant number 41375110]
文摘The nonlinear local Lyapunov exponent(NLLE) can be used as a quantification of the local predictability limit of chaotic systems. In this study, the phase-spatial structure of the local predictability limit over the Lorenz-63 system is investigated. It is found that the inner and outer rims of each regime of the attractor have a high probability of a longer than average local predictability limit, while the center part is the opposite. However, the distribution of the local predictability limit is nonuniformly organized, with adjacent points sometimes showing quite distinct error growth.The source of local predictability is linked to the local dynamics, which is related to the region in the phase space and the duration on the current regime.