Based on the z-coordinate ocean model HAMSOM,we introduced the internal-tide viscosity term and applied the model to numerically investigate the M2 internal tide generation and propagation in the Luzon Strait (LS).T...Based on the z-coordinate ocean model HAMSOM,we introduced the internal-tide viscosity term and applied the model to numerically investigate the M2 internal tide generation and propagation in the Luzon Strait (LS).The results show that (1) in the upper 250 m depth,at the thermocline,the maximum amplitude of the generated internal tides in the LS can reach 40 m;(2) the major internal tides are generated to the northwest of Itbayat Island,the southwest of Batan Island and the northwest of the Babuyan Islands;(3) during the propagation the baroclinic energy scattering and reflection is obvious,which exists under the effect of the specific topography in the South China Sea (SCS);(4) the westward-propagating internal tides are divided into two branches entering the SCS.While passing through 118 E,the major branch is divided into two branches again.The strongest internal tides in the LS are generated to the northwest of Itbayat Island and propagate northeastward to the Pacific.However,to the east of 122 E,most of the internal tides propagate southeastward to the Pacific as a beam.展开更多
To study the Taiwan Strait (TS), an unusual sea area, the numerical model in marginal seas of China is used to simulate and analyze the tidal wave motion in the strait. The numerical modeling experiments reproduce t...To study the Taiwan Strait (TS), an unusual sea area, the numerical model in marginal seas of China is used to simulate and analyze the tidal wave motion in the strait. The numerical modeling experiments reproduce the amphidromic system of the M2 tide in the south end of the Taiwan strait, and consequently confirm the existence of the degenerate amphidromic system. On this basis, further discussion is conducted on the M2 system and its formation mechanism. It can be concluded that the tidal waves of the TS is consisted of the progressing wave from the north entrance and the degenerate amphidromic system from the south entrance, in which the progressing wave from the north entrance dominates the tidal wave motion in the strait. Except for the convergent effect caused by the landform and boundary, the degenerate amphidromic system produced in the south of the strait is another important factor for the following phenomena: the large tidal range in the middle of the strait, the concentrative zone of co-amplitude and co-phase line in the south of the strait. The degenerate amphidromic system is mainly produced by the incident Pacific Ocean tidal wave from the Luzon strait and the action by the shoreline and landform. The position of the amphidromic point is compelled to move toward southwest until degenerating by the powerful progressing wave from the north entrance.展开更多
TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtain...TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtained from the South China Sea (SCS). The maximum tide velocities along the semi-major axis and semi-minor axis can be computed from the tidal ellipse. The global distribution of M2 internal tide vertical energy flux from the sea bottom is calculated based on a linear internal wave generation model. The global vertical energy flux of M2 internal tide is 0.96 TW, with 0.36 TW in the Pacific, 0.31 TW in the Atlantic and 0.29 TW in the Indian Ocean, obtained in this study. The total horizontal energy flux of M2 internal tide radiating into the open ocean from the lateral boundaries is 0.13 TW, with 0.06 TW in the Pacific, 0.04TW in the Atlantic, and 0.03 TW in the Indian Ocean. The result shows that the principal lunar semi-diurnal tide Me provides enough energy to maintain the large-scale thermohaline circulation of the ocean.展开更多
Horizontal winds in the mesosphere (80-100 km) were measured by meteor radar in Wuhan, China (30° N, 114° E) over a 45-month interval in 2002-2005 and the data examined to investigate the monthly mean be...Horizontal winds in the mesosphere (80-100 km) were measured by meteor radar in Wuhan, China (30° N, 114° E) over a 45-month interval in 2002-2005 and the data examined to investigate the monthly mean behavior of the Ol tide. A clear seasonal variation in amplitude of the O1 tide ranging from -0.3 m/s to 2.6 m/s was observed. In most months, the northward and eastward components differed by about 7 lunar hours with the eastward component leading. Comparison of the amplitudes of the M2 and O1 tides suggests the O1 tide is quite stronger over Wuhan, China. The amplitude ratio of the O1 tide to the M2 tide is quite stronger than that the gravitational potential being 0.41. The vertical wavelength of the O1 tide differs on a monthly basis. Height profiles of the O1 tide showed obvious height variation. The O1 tide is stronger in January and July. In different month, the vertical wavelength for the O1 tide changes considerably at the same height. The year's variation trend of the northward and eastward components is very similar in both phase and amplitude.展开更多
The radial tidal current field accounts for the formation of the radial sand ridges in the South Yellow Sea. Understanding the formation and evolution of this radial tidal current field is vital to assessing the morph...The radial tidal current field accounts for the formation of the radial sand ridges in the South Yellow Sea. Understanding the formation and evolution of this radial tidal current field is vital to assessing the morphodynamic features in the area. A semi-enclosed rectangular basin with and without a coastal barrier was schematized from the topography of the Bohai Sea and Yellow Sea. The 2D tidal current field in this basin was simulated using the DELFT3D-FLOW model. The concept of tidal wave refraction, which highlights the effect of the sloped or stepped submarine topography on the propagation of the tidal waves, was introduced to explain the formation of the radial tidal current field. Under the effect of tidal wave refraction, co-phase lines of the counterclockwise rotating tidal wave and incident tidal wave are transformed into clockwise and counterclockwise deflections, respectively, leading to the convergence and divergence of the flow field. Regardless of whether a coastal barrier exists or not, the outer radial tidal current field might emerge over certain topography. The responses of the radial tidal current field in this basin to the environmental variations such as coastline changes and bottom erosions were discussed. Results show that local protrusion near the focal point of the radial tidal current field will have limited effects on the location of the tidal system. However, a remarkable shift of the amphidromic point toward the entrance and central axis of this basin and a movement of the focal point of the radial tidal current field toward the entrance could be caused by the significant seaward coastline advance and submarine slope erosion.展开更多
Based on the multilevel model, numerical calculations of tidal current affected by the M-2 tide in the Tokyo Bay have been carried out. The results of calculation are compared with the data observed in the Tokyo Bay a...Based on the multilevel model, numerical calculations of tidal current affected by the M-2 tide in the Tokyo Bay have been carried out. The results of calculation are compared with the data observed in the Tokyo Bay and the result calculated by an approximate formula as the Tokyo Bay is regarded as a rectangular bay, and good agreement is found. It is proved that the mathematical model and the calculation method are correct and useable.展开更多
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 200905001 and 201005019the National Natural Science Foundation of China under contract No.41006002
文摘Based on the z-coordinate ocean model HAMSOM,we introduced the internal-tide viscosity term and applied the model to numerically investigate the M2 internal tide generation and propagation in the Luzon Strait (LS).The results show that (1) in the upper 250 m depth,at the thermocline,the maximum amplitude of the generated internal tides in the LS can reach 40 m;(2) the major internal tides are generated to the northwest of Itbayat Island,the southwest of Batan Island and the northwest of the Babuyan Islands;(3) during the propagation the baroclinic energy scattering and reflection is obvious,which exists under the effect of the specific topography in the South China Sea (SCS);(4) the westward-propagating internal tides are divided into two branches entering the SCS.While passing through 118 E,the major branch is divided into two branches again.The strongest internal tides in the LS are generated to the northwest of Itbayat Island and propagate northeastward to the Pacific.However,to the east of 122 E,most of the internal tides propagate southeastward to the Pacific as a beam.
文摘To study the Taiwan Strait (TS), an unusual sea area, the numerical model in marginal seas of China is used to simulate and analyze the tidal wave motion in the strait. The numerical modeling experiments reproduce the amphidromic system of the M2 tide in the south end of the Taiwan strait, and consequently confirm the existence of the degenerate amphidromic system. On this basis, further discussion is conducted on the M2 system and its formation mechanism. It can be concluded that the tidal waves of the TS is consisted of the progressing wave from the north entrance and the degenerate amphidromic system from the south entrance, in which the progressing wave from the north entrance dominates the tidal wave motion in the strait. Except for the convergent effect caused by the landform and boundary, the degenerate amphidromic system produced in the south of the strait is another important factor for the following phenomena: the large tidal range in the middle of the strait, the concentrative zone of co-amplitude and co-phase line in the south of the strait. The degenerate amphidromic system is mainly produced by the incident Pacific Ocean tidal wave from the Luzon strait and the action by the shoreline and landform. The position of the amphidromic point is compelled to move toward southwest until degenerating by the powerful progressing wave from the north entrance.
基金Supported by the National Basic Research Program of China (973 Program, No. 2005CB422303)the International Cooperation Program (No. 2004DFB02700)+1 种基金the National Natural Science Foundation of China (No. 40552002)The TOPEX/POSEIDON data are provided by Physical Oceanography Distributed Active Archive Center (PO DACC)
文摘TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtained from the South China Sea (SCS). The maximum tide velocities along the semi-major axis and semi-minor axis can be computed from the tidal ellipse. The global distribution of M2 internal tide vertical energy flux from the sea bottom is calculated based on a linear internal wave generation model. The global vertical energy flux of M2 internal tide is 0.96 TW, with 0.36 TW in the Pacific, 0.31 TW in the Atlantic and 0.29 TW in the Indian Ocean, obtained in this study. The total horizontal energy flux of M2 internal tide radiating into the open ocean from the lateral boundaries is 0.13 TW, with 0.06 TW in the Pacific, 0.04TW in the Atlantic, and 0.03 TW in the Indian Ocean. The result shows that the principal lunar semi-diurnal tide Me provides enough energy to maintain the large-scale thermohaline circulation of the ocean.
基金Acknowledgements This research was supported by National Natural Science Foundation of China (41104095)
文摘Horizontal winds in the mesosphere (80-100 km) were measured by meteor radar in Wuhan, China (30° N, 114° E) over a 45-month interval in 2002-2005 and the data examined to investigate the monthly mean behavior of the Ol tide. A clear seasonal variation in amplitude of the O1 tide ranging from -0.3 m/s to 2.6 m/s was observed. In most months, the northward and eastward components differed by about 7 lunar hours with the eastward component leading. Comparison of the amplitudes of the M2 and O1 tides suggests the O1 tide is quite stronger over Wuhan, China. The amplitude ratio of the O1 tide to the M2 tide is quite stronger than that the gravitational potential being 0.41. The vertical wavelength of the O1 tide differs on a monthly basis. Height profiles of the O1 tide showed obvious height variation. The O1 tide is stronger in January and July. In different month, the vertical wavelength for the O1 tide changes considerably at the same height. The year's variation trend of the northward and eastward components is very similar in both phase and amplitude.
基金Supported by the National Natural Science Foundation of China(Nos.51179067,51379072)the Special Funds for Scientific Research on Public Welfare of Ministry of Water Resources of China(No.201201045)the College Graduate Research and Innovation Project of Jiangsu Province,China(No.CXZZ12_0254)
文摘The radial tidal current field accounts for the formation of the radial sand ridges in the South Yellow Sea. Understanding the formation and evolution of this radial tidal current field is vital to assessing the morphodynamic features in the area. A semi-enclosed rectangular basin with and without a coastal barrier was schematized from the topography of the Bohai Sea and Yellow Sea. The 2D tidal current field in this basin was simulated using the DELFT3D-FLOW model. The concept of tidal wave refraction, which highlights the effect of the sloped or stepped submarine topography on the propagation of the tidal waves, was introduced to explain the formation of the radial tidal current field. Under the effect of tidal wave refraction, co-phase lines of the counterclockwise rotating tidal wave and incident tidal wave are transformed into clockwise and counterclockwise deflections, respectively, leading to the convergence and divergence of the flow field. Regardless of whether a coastal barrier exists or not, the outer radial tidal current field might emerge over certain topography. The responses of the radial tidal current field in this basin to the environmental variations such as coastline changes and bottom erosions were discussed. Results show that local protrusion near the focal point of the radial tidal current field will have limited effects on the location of the tidal system. However, a remarkable shift of the amphidromic point toward the entrance and central axis of this basin and a movement of the focal point of the radial tidal current field toward the entrance could be caused by the significant seaward coastline advance and submarine slope erosion.
文摘Based on the multilevel model, numerical calculations of tidal current affected by the M-2 tide in the Tokyo Bay have been carried out. The results of calculation are compared with the data observed in the Tokyo Bay and the result calculated by an approximate formula as the Tokyo Bay is regarded as a rectangular bay, and good agreement is found. It is proved that the mathematical model and the calculation method are correct and useable.