The cholinergic system plays an important role in the central nervous system of insects and is closely related to the complex behavior of insects. The immunohistochemical technique was performed to detect the expressi...The cholinergic system plays an important role in the central nervous system of insects and is closely related to the complex behavior of insects. The immunohistochemical technique was performed to detect the expression of like-muscarinic acetylcholine receptor M2 in the brain of three castes of Polyrhachis vicina. A positive expression of like-muscarinic acetylcholine receptor M2 was observed in the mushroom body, central body and antennal lobes of the ant brain; but there is great diversity in their location and intensity among worker, queen and male ants. It is speculated that like-muscafinic acetylcholine receptor M2 plays a critical role in the central nervous system, in terms of projecting visual information and olfactory information into the protocerebrum and integrating many inputs.展开更多
BACKGROUND: Organophosphorus insecticides may promote the accumulation of acetylcholine at synapses and the neuromuscular junction by inhibiting acetylcholinesterase activity to cause disturbance of neural signal con...BACKGROUND: Organophosphorus insecticides may promote the accumulation of acetylcholine at synapses and the neuromuscular junction by inhibiting acetylcholinesterase activity to cause disturbance of neural signal conduction and induce a toxic reaction. Organophosphorus insecticides may act on M2 muscarinic acetylcholine receptors, whose combination with G proteins is regulated by phosphorylation of G protein-coupled receptor kinase 2. OBJECTIVE: To investigate the effects of organophosphorus insecticides on the phosphorylation of G protein-coupled receptor kinase 2-mediated M2 muscarinic acetylcholine receptors and to reveal other possible actions of organophosphorus insecticides. DESIGN, TIME AND SETTING: An observational study, which was performed in the Central Laboratory of Shenyang Medical College, and Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University from June 2002 to December 2004. MATERIALS: Paraoxon, parathion, chlorpyrifos, and chlorpyrifos oxon were provided by Chem Service Company, USA, [γ -p^32] ATP and [^35S]GTP γ S by New England Nuclear Life Science Products, and recombinant β 2-adrenergic receptor membrane protein by Sigma Company, USA. METHODS: The M2 muscarinic acetylcholine receptor was extracted and purified from pig brain using affinity chromatography. Subsequently, the purified M2 muscarinic acetylcholine receptor, G protein-coupled receptor kinase 2, and [γ -p^32] ATP were incubated with different concentrations of paraoxon and chlorpyrifos oxon together. The mixture then underwent polyacrylamide gel electrophoresis, and the gel film was dried and radioactively autographed to detect phosphorylation of the M2 muscarinic acetylcholine receptor. Finally, the radio-labeled phosphorylated M2 receptor protein band was excised for counting with an isotope liquid scintillation counter. MAIN OUTCOME MEASURES: Effects of chlorpyrifos oxon, paraoxon, chlorpyrifos, and parathion in different concentrations on the phosphorylation of the M2 muscarinic acetylcholine receptor; effects of chlorpyrifos oxon on the phosphorylation of the β -adrenergic receptor. RESULTS: Chlorpyrifos oxon could completely inhibit the phosphorylation of the M2 muscarinic acetylcholine receptor, and its IC50 was 70 μ mol/L. Chlorpyrifos could also inhibit the phosphorylation of the M2 muscarinic acetylcholine receptor. However, paraoxon and parathion could not inhibit the phosphorylation of the M2 muscarinic acetylcholine receptor. Chlorpyrifos oxon in different concentrations could also not inhibit the phosphorylation of the β 2-adrenergic receptor catalyzed by G protein-coupled receptor kinase 2. CONCLUSION: Different kinds of organophosphorus insecticides have different effects on the phosphorylation of the G protein-coupled receptor kinase 2-mediated M2 muscarinic acetylcholine receptor. Organophosphorus insecticides possibly have different toxic effects.展开更多
Objectives To explore the relationship between serum autoantibodies against myocardial β1-adrenergic, M2-cholinergic receptors and chronic Keshan disease (CKD). Methods The second extracellular loops of β1 and...Objectives To explore the relationship between serum autoantibodies against myocardial β1-adrenergic, M2-cholinergic receptors and chronic Keshan disease (CKD). Methods The second extracellular loops of β1 and M2 receptors on human cardiomyocytes were used as the antigens. Enzyme linked immunosorbent assay (ELISA) was applied to determine serum autoantibodies against myocardial β1 and ME receptors in 32 CKD patients. 31 healthy subjects from endemic area were selected as the control. Results Positive rate of autoantibodies against myocardial β1 adrenergic (51.3%, 17/32) and M2 cholinergic (56.3% , 18/32) receptors were significantly higher than those in the control (9.7%, 3/ 31; 12.9%, 4/31) (both P〈 0.01). Both positive rate and titers of above autoantibodies in NYHA Ⅱ - Ⅲ CKD patients were significantly higher than those in NYHA Ⅳ, demonstrating an apparently positive correlation between serum antibodies against myocardial β1 and M2 receptors (r=0.95). Conclusions Autoantibodies against myocardial β1 and M2 receptors were found in sera of CKD patients; distribution of positive rate and titers of the autoantibodies in CKD patients in various NYHA are significantly different. classes of cardiac function展开更多
1文献来源
Hayes DF, Thor AD, Dressler LG, et al. HER2 and response to Paclitaxel in node-positive breast cancer [J]. N Engl J ned, 2007,357(15):1496- 1506.
基金the Natural Science Foundation of Shaanxi, China (2005 Cl 25)
文摘The cholinergic system plays an important role in the central nervous system of insects and is closely related to the complex behavior of insects. The immunohistochemical technique was performed to detect the expression of like-muscarinic acetylcholine receptor M2 in the brain of three castes of Polyrhachis vicina. A positive expression of like-muscarinic acetylcholine receptor M2 was observed in the mushroom body, central body and antennal lobes of the ant brain; but there is great diversity in their location and intensity among worker, queen and male ants. It is speculated that like-muscafinic acetylcholine receptor M2 plays a critical role in the central nervous system, in terms of projecting visual information and olfactory information into the protocerebrum and integrating many inputs.
文摘BACKGROUND: Organophosphorus insecticides may promote the accumulation of acetylcholine at synapses and the neuromuscular junction by inhibiting acetylcholinesterase activity to cause disturbance of neural signal conduction and induce a toxic reaction. Organophosphorus insecticides may act on M2 muscarinic acetylcholine receptors, whose combination with G proteins is regulated by phosphorylation of G protein-coupled receptor kinase 2. OBJECTIVE: To investigate the effects of organophosphorus insecticides on the phosphorylation of G protein-coupled receptor kinase 2-mediated M2 muscarinic acetylcholine receptors and to reveal other possible actions of organophosphorus insecticides. DESIGN, TIME AND SETTING: An observational study, which was performed in the Central Laboratory of Shenyang Medical College, and Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University from June 2002 to December 2004. MATERIALS: Paraoxon, parathion, chlorpyrifos, and chlorpyrifos oxon were provided by Chem Service Company, USA, [γ -p^32] ATP and [^35S]GTP γ S by New England Nuclear Life Science Products, and recombinant β 2-adrenergic receptor membrane protein by Sigma Company, USA. METHODS: The M2 muscarinic acetylcholine receptor was extracted and purified from pig brain using affinity chromatography. Subsequently, the purified M2 muscarinic acetylcholine receptor, G protein-coupled receptor kinase 2, and [γ -p^32] ATP were incubated with different concentrations of paraoxon and chlorpyrifos oxon together. The mixture then underwent polyacrylamide gel electrophoresis, and the gel film was dried and radioactively autographed to detect phosphorylation of the M2 muscarinic acetylcholine receptor. Finally, the radio-labeled phosphorylated M2 receptor protein band was excised for counting with an isotope liquid scintillation counter. MAIN OUTCOME MEASURES: Effects of chlorpyrifos oxon, paraoxon, chlorpyrifos, and parathion in different concentrations on the phosphorylation of the M2 muscarinic acetylcholine receptor; effects of chlorpyrifos oxon on the phosphorylation of the β -adrenergic receptor. RESULTS: Chlorpyrifos oxon could completely inhibit the phosphorylation of the M2 muscarinic acetylcholine receptor, and its IC50 was 70 μ mol/L. Chlorpyrifos could also inhibit the phosphorylation of the M2 muscarinic acetylcholine receptor. However, paraoxon and parathion could not inhibit the phosphorylation of the M2 muscarinic acetylcholine receptor. Chlorpyrifos oxon in different concentrations could also not inhibit the phosphorylation of the β 2-adrenergic receptor catalyzed by G protein-coupled receptor kinase 2. CONCLUSION: Different kinds of organophosphorus insecticides have different effects on the phosphorylation of the G protein-coupled receptor kinase 2-mediated M2 muscarinic acetylcholine receptor. Organophosphorus insecticides possibly have different toxic effects.
文摘Objectives To explore the relationship between serum autoantibodies against myocardial β1-adrenergic, M2-cholinergic receptors and chronic Keshan disease (CKD). Methods The second extracellular loops of β1 and M2 receptors on human cardiomyocytes were used as the antigens. Enzyme linked immunosorbent assay (ELISA) was applied to determine serum autoantibodies against myocardial β1 and ME receptors in 32 CKD patients. 31 healthy subjects from endemic area were selected as the control. Results Positive rate of autoantibodies against myocardial β1 adrenergic (51.3%, 17/32) and M2 cholinergic (56.3% , 18/32) receptors were significantly higher than those in the control (9.7%, 3/ 31; 12.9%, 4/31) (both P〈 0.01). Both positive rate and titers of above autoantibodies in NYHA Ⅱ - Ⅲ CKD patients were significantly higher than those in NYHA Ⅳ, demonstrating an apparently positive correlation between serum antibodies against myocardial β1 and M2 receptors (r=0.95). Conclusions Autoantibodies against myocardial β1 and M2 receptors were found in sera of CKD patients; distribution of positive rate and titers of the autoantibodies in CKD patients in various NYHA are significantly different. classes of cardiac function
文摘1文献来源
Hayes DF, Thor AD, Dressler LG, et al. HER2 and response to Paclitaxel in node-positive breast cancer [J]. N Engl J ned, 2007,357(15):1496- 1506.