In wireless sensor networks(WSNs),nodes are often scheduled to alternate between working mode and sleeping mode from energy efficiency point of view.When delay is tolerable,it is not necessary to preserve network conn...In wireless sensor networks(WSNs),nodes are often scheduled to alternate between working mode and sleeping mode from energy efficiency point of view.When delay is tolerable,it is not necessary to preserve network connectivity during activity(working or sleeping) scheduling,enabling more sensors to be switched to sleeping mode and thus more energy savings.In this paper,the nodal behavior in such delay-tolerant WSNs(DT-WSNs) is modeled and analyzed.The maximum hop count with a routing path is derived in order not to violate a given sensor-to-sink delay constraint,along with extensive simulation results.展开更多
5G技术发展使用户能够通过车联网和V2X(vehicle to everything)技术快速获取周围物理环境的信息。车辆、电网运营商等也能根据路网信息进行更好的资源分配与调度,从而促进现代化智慧交通、智慧城市等发展战略的实现。考虑到现代化城市...5G技术发展使用户能够通过车联网和V2X(vehicle to everything)技术快速获取周围物理环境的信息。车辆、电网运营商等也能根据路网信息进行更好的资源分配与调度,从而促进现代化智慧交通、智慧城市等发展战略的实现。考虑到现代化城市不同区域承担着不同功能,在车辆停靠、电网容量、土地约束、成本价格等方面具有不同特征,为优化充电站部署,建立了V2X辅助下城市区域特征差异充电站模型。考虑实际情况,引入M/M/S/K排队模型和用户充电决策模型对用户行为进行刻画。进一步建立优化模型,在用地面积、电网容量以及服务需求的约束下,通过充电站点选择和充电桩部署,最大化运营商收益。为求解该问题,设计了一种基于站点容量和用户充电行为的充电站网络规划方法,首先求解给定站点的最优充电桩部署数目,然后对候选站点进行筛选聚合实现充电站网络优化。仿真验证了所提优化方法的有效性,所提充电站网络优化方法能够有效提高站点内充电桩利用率,减少运营商建设成本,提升运营商整体盈利。展开更多
During epidemics,controlling the patients’congestion is a way to reduce disease spreading.Raising medical demands converts hospitals into one of the sources of disease outbreaks.The long patient waiting time in queue...During epidemics,controlling the patients’congestion is a way to reduce disease spreading.Raising medical demands converts hospitals into one of the sources of disease outbreaks.The long patient waiting time in queues to receive medical services leads to more casualties.The rise of patients increases their waste,which is another source of disease outbreak.In this study,a mathematical model is developed to control patients’congestion in a medical center and manage their waste,considering environmental issues.Besides a queueing system controlling the patients’congestion in the treatment center,another queue is considered for vehicles.An inventory model is employed to prevent waste accumulation.The developed model is solved and reaches an exact solution in small size,and obtains an acceptable solution in large size using the Grasshopper algorithm.A case study is considered to demonstrate the model’s applicability.Also,Sensitivity analysis and valuable managerial insights are presented.展开更多
基金Sponsored by the Shanghai Education Bureau(Grant No. 11YZ93,A-3101-10-035)the Shanghai Baiyulan Funding(Grant No. 2010B086)the National Natural Science Foundation of China(Grant No. 61003215)
文摘In wireless sensor networks(WSNs),nodes are often scheduled to alternate between working mode and sleeping mode from energy efficiency point of view.When delay is tolerable,it is not necessary to preserve network connectivity during activity(working or sleeping) scheduling,enabling more sensors to be switched to sleeping mode and thus more energy savings.In this paper,the nodal behavior in such delay-tolerant WSNs(DT-WSNs) is modeled and analyzed.The maximum hop count with a routing path is derived in order not to violate a given sensor-to-sink delay constraint,along with extensive simulation results.
文摘5G技术发展使用户能够通过车联网和V2X(vehicle to everything)技术快速获取周围物理环境的信息。车辆、电网运营商等也能根据路网信息进行更好的资源分配与调度,从而促进现代化智慧交通、智慧城市等发展战略的实现。考虑到现代化城市不同区域承担着不同功能,在车辆停靠、电网容量、土地约束、成本价格等方面具有不同特征,为优化充电站部署,建立了V2X辅助下城市区域特征差异充电站模型。考虑实际情况,引入M/M/S/K排队模型和用户充电决策模型对用户行为进行刻画。进一步建立优化模型,在用地面积、电网容量以及服务需求的约束下,通过充电站点选择和充电桩部署,最大化运营商收益。为求解该问题,设计了一种基于站点容量和用户充电行为的充电站网络规划方法,首先求解给定站点的最优充电桩部署数目,然后对候选站点进行筛选聚合实现充电站网络优化。仿真验证了所提优化方法的有效性,所提充电站网络优化方法能够有效提高站点内充电桩利用率,减少运营商建设成本,提升运营商整体盈利。
文摘During epidemics,controlling the patients’congestion is a way to reduce disease spreading.Raising medical demands converts hospitals into one of the sources of disease outbreaks.The long patient waiting time in queues to receive medical services leads to more casualties.The rise of patients increases their waste,which is another source of disease outbreak.In this study,a mathematical model is developed to control patients’congestion in a medical center and manage their waste,considering environmental issues.Besides a queueing system controlling the patients’congestion in the treatment center,another queue is considered for vehicles.An inventory model is employed to prevent waste accumulation.The developed model is solved and reaches an exact solution in small size,and obtains an acceptable solution in large size using the Grasshopper algorithm.A case study is considered to demonstrate the model’s applicability.Also,Sensitivity analysis and valuable managerial insights are presented.