目的探讨m1A RNA甲基化相关基因和血浆m1A甲基化水平对结肠腺癌(colorectal adenocarcinoma,COAD)的诊断效能,为COAD早期诊断提供新的方案。方法通过UALCAN、The Human Protein Atlas和TCGA-GTEx数据库,分析COAD组织和正常结肠组织中m1...目的探讨m1A RNA甲基化相关基因和血浆m1A甲基化水平对结肠腺癌(colorectal adenocarcinoma,COAD)的诊断效能,为COAD早期诊断提供新的方案。方法通过UALCAN、The Human Protein Atlas和TCGA-GTEx数据库,分析COAD组织和正常结肠组织中m1A相关基因mRNA和蛋白水平的差异表达。利用ELISA法检测收集于我院初诊的COAD患者和正常人血浆中m1A甲基化水平。结合COAD临床病理特征分析m1A甲基化对COAD的诊断效能。结果m1A编码器和读码器基因的蛋白水平和mRNA水平在COAD组织中的表达显著上调,其中以TRMT6和TRMT10C两个编码器表达升高最为显著。两个编码器基因均可作为COAD诊断,尤其是早期诊断标志物,且其AUC均达到0.9以上。m1A总体甲基化水平在COAD血浆中明显升高,并可作为早期COAD的诊断标志物。结论m1A编码器基因和血浆m1A在COAD中明显升高,有望成为一种新的早期COAD诊断标志物。展开更多
Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accou...Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accountable for immune surveillance,however,when a spinal cord injury occurs,the microenvironment drastically changes,leading to glial scars and failed axonal regeneration.In this context,microglia vary their gene and protein expression during activation,and proliferation in reaction to the injury,influencing injury responses both favorably and unfavorably.A dynamic and multifaceted injury response is mediated by microglia,which interact directly with neurons,astrocytes,oligodendrocytes,and neural stem/progenitor cells.Despite a clear understanding of their essential nature and origin,the mechanisms of action and new functions of microglia in spinal cord injury require extensive research.This review summarizes current studies on microglial genesis,physiological function,and pathological state,highlights their crucial roles in spinal cord injury,and proposes microglia as a therapeutic target.展开更多
Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume respon...Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume responsibility for spontaneous retinal regeneration,wherein endogenous Müller glia undergo proliferation,transform into Müller glia-derived progenitor cells,and subsequently regenerate the entire retina with restored functionality.Conversely,Müller glia in the mouse and human retina exhibit limited neural reprogramming.Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders.Müller glia reprogramming in mice has been accomplished with remarkable success,through various technologies.Advancements in molecular,genetic,epigenetic,morphological,and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice.Nevertheless,there remain issues that hinder improving reprogramming efficiency and maturity.Thus,understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency,and for developing novel Müller glia reprogramming strategies.This review describes recent progress in relatively successful Müller glia reprogramming strategies.It also provides a basis for developing new Müller glia reprogramming strategies in mice,including epigenetic remodeling,metabolic modulation,immune regulation,chemical small-molecules regulation,extracellular matrix remodeling,and cell-cell fusion,to achieve Müller glia reprogramming in mice.展开更多
Hepatocellular carcinoma is one of the leading causes of cancer-related deaths globally,and effective treatments are urgently needed.The present study aimed to investigate the inhibitory effect of Calculus Bovis(CB)on...Hepatocellular carcinoma is one of the leading causes of cancer-related deaths globally,and effective treatments are urgently needed.The present study aimed to investigate the inhibitory effect of Calculus Bovis(CB)on liver cancer and the underlying mechanisms.CB inhibited M2 tumor-associated macrophage polarization and modulated the Wnt/β-catenin signaling pathway,thereby suppressing the proliferation of liver cancer cells.The inhibitory effect on liver cancer growth was confirmed by both in vivo and in vitro experiments(detailed by Huang et al).The present study provides a theoretical basis for the application of CB for the treatment of liver cancer,providing new avenues for liver cancer treatment.展开更多
文摘目的探讨m1A RNA甲基化相关基因和血浆m1A甲基化水平对结肠腺癌(colorectal adenocarcinoma,COAD)的诊断效能,为COAD早期诊断提供新的方案。方法通过UALCAN、The Human Protein Atlas和TCGA-GTEx数据库,分析COAD组织和正常结肠组织中m1A相关基因mRNA和蛋白水平的差异表达。利用ELISA法检测收集于我院初诊的COAD患者和正常人血浆中m1A甲基化水平。结合COAD临床病理特征分析m1A甲基化对COAD的诊断效能。结果m1A编码器和读码器基因的蛋白水平和mRNA水平在COAD组织中的表达显著上调,其中以TRMT6和TRMT10C两个编码器表达升高最为显著。两个编码器基因均可作为COAD诊断,尤其是早期诊断标志物,且其AUC均达到0.9以上。m1A总体甲基化水平在COAD血浆中明显升高,并可作为早期COAD的诊断标志物。结论m1A编码器基因和血浆m1A在COAD中明显升高,有望成为一种新的早期COAD诊断标志物。
文摘Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accountable for immune surveillance,however,when a spinal cord injury occurs,the microenvironment drastically changes,leading to glial scars and failed axonal regeneration.In this context,microglia vary their gene and protein expression during activation,and proliferation in reaction to the injury,influencing injury responses both favorably and unfavorably.A dynamic and multifaceted injury response is mediated by microglia,which interact directly with neurons,astrocytes,oligodendrocytes,and neural stem/progenitor cells.Despite a clear understanding of their essential nature and origin,the mechanisms of action and new functions of microglia in spinal cord injury require extensive research.This review summarizes current studies on microglial genesis,physiological function,and pathological state,highlights their crucial roles in spinal cord injury,and proposes microglia as a therapeutic target.
基金supported by the National Natural Science Foundation of China,No.31930068National Key Research and Development Program of China,Nos.2018YFA0107302 and 2021YFA1101203(all to HX).
文摘Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume responsibility for spontaneous retinal regeneration,wherein endogenous Müller glia undergo proliferation,transform into Müller glia-derived progenitor cells,and subsequently regenerate the entire retina with restored functionality.Conversely,Müller glia in the mouse and human retina exhibit limited neural reprogramming.Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders.Müller glia reprogramming in mice has been accomplished with remarkable success,through various technologies.Advancements in molecular,genetic,epigenetic,morphological,and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice.Nevertheless,there remain issues that hinder improving reprogramming efficiency and maturity.Thus,understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency,and for developing novel Müller glia reprogramming strategies.This review describes recent progress in relatively successful Müller glia reprogramming strategies.It also provides a basis for developing new Müller glia reprogramming strategies in mice,including epigenetic remodeling,metabolic modulation,immune regulation,chemical small-molecules regulation,extracellular matrix remodeling,and cell-cell fusion,to achieve Müller glia reprogramming in mice.
文摘Hepatocellular carcinoma is one of the leading causes of cancer-related deaths globally,and effective treatments are urgently needed.The present study aimed to investigate the inhibitory effect of Calculus Bovis(CB)on liver cancer and the underlying mechanisms.CB inhibited M2 tumor-associated macrophage polarization and modulated the Wnt/β-catenin signaling pathway,thereby suppressing the proliferation of liver cancer cells.The inhibitory effect on liver cancer growth was confirmed by both in vivo and in vitro experiments(detailed by Huang et al).The present study provides a theoretical basis for the application of CB for the treatment of liver cancer,providing new avenues for liver cancer treatment.