期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
加权Orlicz空间内的Mntz有理逼近 被引量:1
1
作者 张思丽 吴嘎日迪 《纯粹数学与应用数学》 2016年第2期132-140,共9页
研究了Mntz有理函数在加权Orlicz空间内的逼近性质,证明了它在Orlicz空间内的有界性,利用加权连续模、K-泛函、Hardy-Littlewood极大函数、Hlder不等式给出了该有理函数在Orlicz空间内的加权逼近性质.
关键词 müntz有理函数 加权逼近 ORLICZ空间
下载PDF
TETRAHEDRAL C^m INTERPOLATION BY RATIONAL FUNCTIONS
2
作者 Guo-liang Xu Chuan I Chu Wei-min Xue 《Journal of Computational Mathematics》 SCIE EI CSCD 2001年第2期131-138,共8页
A general local C-m(m greater than or equal to 0) tetrahedral interpolation scheme by polynomials of degree 4m + 1 plus low order rational functions from the given data is proposed. The scheme can have either 4m + 1 o... A general local C-m(m greater than or equal to 0) tetrahedral interpolation scheme by polynomials of degree 4m + 1 plus low order rational functions from the given data is proposed. The scheme can have either 4m + 1 order algebraic precision if C-2m data at vertices and C-m data on faces are given or k + E[k/3] + 1 order algebraic precision if C-k (k less than or equal to 2m) data are given at vertices. The resulted interpolant and its partial derivatives of up to order m are polynomials on the boundaries of the tetrahedra. 展开更多
关键词 C-m interpolation rational functions TETRAHEDRA
原文传递
有理数概率下的效用表示定理
3
作者 刘常青 郭耀煌 《成都理工学院学报》 CSCD 北大核心 2001年第2期199-203,共5页
Von Neum ann- Morgenstern的期望效用理论假设对所有的抽奖 (c1 ,p;c2 ,1- p) (以概率 p抽得结果 c1 ,以概率 1- p抽得结果 c2 )的偏好序在所有实数 p(0≤ p≤ 1)均有意义 ;而且期望效用理论基于一组公理 ,从而保证效用函数的存在性和... Von Neum ann- Morgenstern的期望效用理论假设对所有的抽奖 (c1 ,p;c2 ,1- p) (以概率 p抽得结果 c1 ,以概率 1- p抽得结果 c2 )的偏好序在所有实数 p(0≤ p≤ 1)均有意义 ;而且期望效用理论基于一组公理 ,从而保证效用函数的存在性和正线性变换意义下的唯一性。然而 ,当概率为无理数时 ,对于抽奖就难以给出直观的解释 ,J.C.Shepherdson首先研究了基于有理数概率度量的效用理论。作者提出一组有理数概率下效用函数存在的公理 ,并证明该公理体系下的效用表示定理。 展开更多
关键词 乘子集 m-混和集 效用函数 有理数概率 期望效用理论
下载PDF
L^P空间上的Müntz有理逼近 被引量:1
4
作者 唐秀娟 《公安海警学院学报》 2013年第2期37-40,共4页
本文考虑了L^P空间上的M(u|¨)ntz有理系统{x^(λn)},改进了系指数{λ_n}_(n=1)~∞所要满足的条件,得到了逼近的Jackson型定理。
关键词 mntz有理逼近 L^P空间 极大函数 Jackson型定理
原文传递
Counting rational points on cubic curves
5
作者 HEATH-BROWN Roger TESTA Damiano 《Science China Mathematics》 SCIE 2010年第9期2259-2268,共10页
We prove upper bounds for the number of rational points on non-singular cubic curves defined over the rationals.The bounds are uniform in the curve and involve the rank of the corresponding Jacobian.The method used in... We prove upper bounds for the number of rational points on non-singular cubic curves defined over the rationals.The bounds are uniform in the curve and involve the rank of the corresponding Jacobian.The method used in the proof is a combination of the "determinant method" with an m-descent on the curve. 展开更多
关键词 CUBIC CURVES rational points COUNTING function ELLIPTIC CURVES DETERmINANT method m-descent
原文传递
Positive-instantaneous frequency and approximation 被引量:2
6
作者 Tao QIAN 《Frontiers of Mathematics in China》 SCIE CSCD 2022年第3期337-371,共35页
Positive-instantaneous frequency representation for transient signals has always been a great concern due to its theoretical and practical importance,although the involved concept itself is paradoxical.The desire and ... Positive-instantaneous frequency representation for transient signals has always been a great concern due to its theoretical and practical importance,although the involved concept itself is paradoxical.The desire and practice of uniqueness of such frequency representation(decomposition)raise the related topics in approximation.During approximately the last two decades there has formulated a signal decomposition and reconstruction method rooted in harmonic and complex analysis giving rise to the desired signal representations.The method decomposes any signal into a few basic signals that possess positive instantaneous frequencies.The theory has profound relations to classical mathematics and can be generalized to signals defined in higher dimensional manifolds with vector and matrix values,and in particular,promotes kernel approximation for multi-variate functions.This article mainly serves as a survey.It also gives two important technical proofs of which one for a general convergence result(Theorem 3.4),and the other for necessity of multiple kernel(Lemma 3.7).Expositorily,for a given real-valued signal f one can associate it with a Hardy space function F whose real part coincides with f.Such function F has the form F=f+iHf,where H stands for the Hilbert transformation of the context.We develop fast converging expansions of F in orthogonal terms of the form F=∑k=1^(∞)c_(k)B_(k),where B_(k)'s are also Hardy space functions but with the additional properties B_(k)(t)=ρ_(k)(t)e^(iθ_(k)(t)),ρk≥0,θ′_(k)(t)≥0,a.e.The original real-valued function f is accordingly expanded f=∑k=1^(∞)ρ_(k)(t)cosθ_(k)(t)which,besides the properties ofρ_(k)andθ_(k)given above,also satisfies H(ρ_(k)cosθ_(k))(t)ρ_(k)(t)sinρ_(k)(t).Real-valued functions f(t)=ρ(t)cosθ(t)that satisfy the conditionρ≥0,θ′(t)≥0,H(ρcosθ)(t)=ρ(t)sinθ(t)are called mono-components.If f is a mono-component,then the phase derivativeθ′(t)is defined to be instantaneous frequency of f.The above described positive-instantaneous frequency expansion is a generalization of the Fourier series expansion.Mono-components are crucial to understand the concept instantaneous frequency.We will present several most important mono-component function classes.Decompositions of signals into mono-components are called adaptive Fourier decompositions(AFDs).Wc note that some scopes of the studies on the ID mono-components and AFDs can be extended to vector-valued or even matrix-valued signals defined on higher dimensional manifolds.We finally provide an account of related studies in pure and applied mathematics. 展开更多
关键词 möbius transform blaschke product mono-component hilbert transform hardy space inner and outer functions adaptive fourier decomposition rational orthogonal system nevanlinna factorization beurling-lax theorem reproducing kernel hilbert space several complex variables Clifford alge-bra pre-orthogonal AFD
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部