A general local C-m(m greater than or equal to 0) tetrahedral interpolation scheme by polynomials of degree 4m + 1 plus low order rational functions from the given data is proposed. The scheme can have either 4m + 1 o...A general local C-m(m greater than or equal to 0) tetrahedral interpolation scheme by polynomials of degree 4m + 1 plus low order rational functions from the given data is proposed. The scheme can have either 4m + 1 order algebraic precision if C-2m data at vertices and C-m data on faces are given or k + E[k/3] + 1 order algebraic precision if C-k (k less than or equal to 2m) data are given at vertices. The resulted interpolant and its partial derivatives of up to order m are polynomials on the boundaries of the tetrahedra.展开更多
We prove upper bounds for the number of rational points on non-singular cubic curves defined over the rationals.The bounds are uniform in the curve and involve the rank of the corresponding Jacobian.The method used in...We prove upper bounds for the number of rational points on non-singular cubic curves defined over the rationals.The bounds are uniform in the curve and involve the rank of the corresponding Jacobian.The method used in the proof is a combination of the "determinant method" with an m-descent on the curve.展开更多
Positive-instantaneous frequency representation for transient signals has always been a great concern due to its theoretical and practical importance,although the involved concept itself is paradoxical.The desire and ...Positive-instantaneous frequency representation for transient signals has always been a great concern due to its theoretical and practical importance,although the involved concept itself is paradoxical.The desire and practice of uniqueness of such frequency representation(decomposition)raise the related topics in approximation.During approximately the last two decades there has formulated a signal decomposition and reconstruction method rooted in harmonic and complex analysis giving rise to the desired signal representations.The method decomposes any signal into a few basic signals that possess positive instantaneous frequencies.The theory has profound relations to classical mathematics and can be generalized to signals defined in higher dimensional manifolds with vector and matrix values,and in particular,promotes kernel approximation for multi-variate functions.This article mainly serves as a survey.It also gives two important technical proofs of which one for a general convergence result(Theorem 3.4),and the other for necessity of multiple kernel(Lemma 3.7).Expositorily,for a given real-valued signal f one can associate it with a Hardy space function F whose real part coincides with f.Such function F has the form F=f+iHf,where H stands for the Hilbert transformation of the context.We develop fast converging expansions of F in orthogonal terms of the form F=∑k=1^(∞)c_(k)B_(k),where B_(k)'s are also Hardy space functions but with the additional properties B_(k)(t)=ρ_(k)(t)e^(iθ_(k)(t)),ρk≥0,θ′_(k)(t)≥0,a.e.The original real-valued function f is accordingly expanded f=∑k=1^(∞)ρ_(k)(t)cosθ_(k)(t)which,besides the properties ofρ_(k)andθ_(k)given above,also satisfies H(ρ_(k)cosθ_(k))(t)ρ_(k)(t)sinρ_(k)(t).Real-valued functions f(t)=ρ(t)cosθ(t)that satisfy the conditionρ≥0,θ′(t)≥0,H(ρcosθ)(t)=ρ(t)sinθ(t)are called mono-components.If f is a mono-component,then the phase derivativeθ′(t)is defined to be instantaneous frequency of f.The above described positive-instantaneous frequency expansion is a generalization of the Fourier series expansion.Mono-components are crucial to understand the concept instantaneous frequency.We will present several most important mono-component function classes.Decompositions of signals into mono-components are called adaptive Fourier decompositions(AFDs).Wc note that some scopes of the studies on the ID mono-components and AFDs can be extended to vector-valued or even matrix-valued signals defined on higher dimensional manifolds.We finally provide an account of related studies in pure and applied mathematics.展开更多
基金Supported partially by NSFC under Project 1967108, Croucher Foundation of Hong Kong and FRG ofHong Kong Baptist University.
文摘A general local C-m(m greater than or equal to 0) tetrahedral interpolation scheme by polynomials of degree 4m + 1 plus low order rational functions from the given data is proposed. The scheme can have either 4m + 1 order algebraic precision if C-2m data at vertices and C-m data on faces are given or k + E[k/3] + 1 order algebraic precision if C-k (k less than or equal to 2m) data are given at vertices. The resulted interpolant and its partial derivatives of up to order m are polynomials on the boundaries of the tetrahedra.
文摘We prove upper bounds for the number of rational points on non-singular cubic curves defined over the rationals.The bounds are uniform in the curve and involve the rank of the corresponding Jacobian.The method used in the proof is a combination of the "determinant method" with an m-descent on the curve.
基金Macao University Multi-Year Research Grant(MYRG)MYRG2016-00053-FSTMacao Government Science and Technology Foundation FDCT 0123/2018/A3.
文摘Positive-instantaneous frequency representation for transient signals has always been a great concern due to its theoretical and practical importance,although the involved concept itself is paradoxical.The desire and practice of uniqueness of such frequency representation(decomposition)raise the related topics in approximation.During approximately the last two decades there has formulated a signal decomposition and reconstruction method rooted in harmonic and complex analysis giving rise to the desired signal representations.The method decomposes any signal into a few basic signals that possess positive instantaneous frequencies.The theory has profound relations to classical mathematics and can be generalized to signals defined in higher dimensional manifolds with vector and matrix values,and in particular,promotes kernel approximation for multi-variate functions.This article mainly serves as a survey.It also gives two important technical proofs of which one for a general convergence result(Theorem 3.4),and the other for necessity of multiple kernel(Lemma 3.7).Expositorily,for a given real-valued signal f one can associate it with a Hardy space function F whose real part coincides with f.Such function F has the form F=f+iHf,where H stands for the Hilbert transformation of the context.We develop fast converging expansions of F in orthogonal terms of the form F=∑k=1^(∞)c_(k)B_(k),where B_(k)'s are also Hardy space functions but with the additional properties B_(k)(t)=ρ_(k)(t)e^(iθ_(k)(t)),ρk≥0,θ′_(k)(t)≥0,a.e.The original real-valued function f is accordingly expanded f=∑k=1^(∞)ρ_(k)(t)cosθ_(k)(t)which,besides the properties ofρ_(k)andθ_(k)given above,also satisfies H(ρ_(k)cosθ_(k))(t)ρ_(k)(t)sinρ_(k)(t).Real-valued functions f(t)=ρ(t)cosθ(t)that satisfy the conditionρ≥0,θ′(t)≥0,H(ρcosθ)(t)=ρ(t)sinθ(t)are called mono-components.If f is a mono-component,then the phase derivativeθ′(t)is defined to be instantaneous frequency of f.The above described positive-instantaneous frequency expansion is a generalization of the Fourier series expansion.Mono-components are crucial to understand the concept instantaneous frequency.We will present several most important mono-component function classes.Decompositions of signals into mono-components are called adaptive Fourier decompositions(AFDs).Wc note that some scopes of the studies on the ID mono-components and AFDs can be extended to vector-valued or even matrix-valued signals defined on higher dimensional manifolds.We finally provide an account of related studies in pure and applied mathematics.