介绍了纳米晶软磁合金Fe M B的磁畸结构、磁性能及其应用。分析了在不同温度退火后磁畴结构的变化。论述了Fe Nb B合金和Fe Zr B合金的磁性能。得出结论:当Fe Nb B合金中的B含量≤9at%时,淬态合金具有非晶+αFe双重结构,且Bs高达1 6T;加...介绍了纳米晶软磁合金Fe M B的磁畸结构、磁性能及其应用。分析了在不同温度退火后磁畴结构的变化。论述了Fe Nb B合金和Fe Zr B合金的磁性能。得出结论:当Fe Nb B合金中的B含量≤9at%时,淬态合金具有非晶+αFe双重结构,且Bs高达1 6T;加入0 1at%的Cu和1at%的P可减小淬态αFe晶粒的大小,且晶化后结构均匀。在760K、退火1h后获得的纳米晶Fe86Zr6B8合金含有60%晶化的αFe相,并且具有高达1 58T的饱和磁感应强度和较低的铁损。展开更多
The Fermat–Pramanik series are like below: .The mathematical principle has been established by factorization principle. The Fermat-Pramanik tree can be grown. It produces branched Fermat-Pramanik series using same pr...The Fermat–Pramanik series are like below: .The mathematical principle has been established by factorization principle. The Fermat-Pramanik tree can be grown. It produces branched Fermat-Pramanik series using same principle making Fermat-Pramanik chain. Branched chain can be propagated at any point of the main chain with indefinite length using factorization principle as follows: Same principle is applicable for integer solutions of A<sup>M</sup>+B<sup>2</sup>=C<sup>2</sup>which produces series of the type . It has been shown that this equation is solvable with N{A, B, C, M}. where , , M=M<sub>1</sub>+M<sub>2</sub> and M<sub>1</sub>>M<sub>2</sub>. Subsequently, it has been shown that using M= M<sub>1</sub>+M<sub>2</sub>+M<sub>3</sub>+... The combinations of Ms should be taken so that the values of both the parts (C<sub>n</sub>+B<sub>n</sub>) and (C<sub>n</sub>-B<sub>n</sub>) should be even or odd for obtaining Z{B,C}. Hence, it has been shown that the Fermat triple can generate a) Fermat-Pramanik multiplate, b) Fermat-Pramanik Branched multiplate and c) Fermat-Pramanik deductive series. All these formalisms are useful for development of new principle of cryptography. .展开更多
文摘介绍了纳米晶软磁合金Fe M B的磁畸结构、磁性能及其应用。分析了在不同温度退火后磁畴结构的变化。论述了Fe Nb B合金和Fe Zr B合金的磁性能。得出结论:当Fe Nb B合金中的B含量≤9at%时,淬态合金具有非晶+αFe双重结构,且Bs高达1 6T;加入0 1at%的Cu和1at%的P可减小淬态αFe晶粒的大小,且晶化后结构均匀。在760K、退火1h后获得的纳米晶Fe86Zr6B8合金含有60%晶化的αFe相,并且具有高达1 58T的饱和磁感应强度和较低的铁损。
文摘The Fermat–Pramanik series are like below: .The mathematical principle has been established by factorization principle. The Fermat-Pramanik tree can be grown. It produces branched Fermat-Pramanik series using same principle making Fermat-Pramanik chain. Branched chain can be propagated at any point of the main chain with indefinite length using factorization principle as follows: Same principle is applicable for integer solutions of A<sup>M</sup>+B<sup>2</sup>=C<sup>2</sup>which produces series of the type . It has been shown that this equation is solvable with N{A, B, C, M}. where , , M=M<sub>1</sub>+M<sub>2</sub> and M<sub>1</sub>>M<sub>2</sub>. Subsequently, it has been shown that using M= M<sub>1</sub>+M<sub>2</sub>+M<sub>3</sub>+... The combinations of Ms should be taken so that the values of both the parts (C<sub>n</sub>+B<sub>n</sub>) and (C<sub>n</sub>-B<sub>n</sub>) should be even or odd for obtaining Z{B,C}. Hence, it has been shown that the Fermat triple can generate a) Fermat-Pramanik multiplate, b) Fermat-Pramanik Branched multiplate and c) Fermat-Pramanik deductive series. All these formalisms are useful for development of new principle of cryptography. .