Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-domina...Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-dominant conductive materials. While there are few absorption-dominant shielding materials proposed with magnetic materials, their working frequencies are usually limited to under 30 GHz. In this study, a novel multi-band absorption-dominant EMI shielding film with M-type strontium ferrites and a conductive grid is proposed. This film shows ultralow EMI reflection of less than 5% in multiple mmWave frequency bands with sub-millimeter thicknesses, while shielding more than 99.9% of EMI. The ultralow reflection frequency bands are controllable by tuning the ferromagnetic resonance frequency of M-type strontium ferrites and composite layer geometries. Two examples of shielding films with ultralow reflection frequencies, one for 39 and 52 GHz 5G telecommunication bands and the other for 60 and 77 GHz autonomous radar bands, are presented. The remarkably low reflectance and thinness of the proposed films provide an important advancement toward the commercialization of EMI shielding materials for 5G mmWave applications.展开更多
In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autoco...In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.展开更多
The utilization of electromagnetic waves is rapidly advancing into the millimeter-wave frequency range,posing increasingly severe challenges in terms of electromagnetic pollution prevention and radar stealth.However,e...The utilization of electromagnetic waves is rapidly advancing into the millimeter-wave frequency range,posing increasingly severe challenges in terms of electromagnetic pollution prevention and radar stealth.However,existing millimeter-wave absorbers are still inadequate in addressing these issues due to their monotonous magnetic resonance pattern.In this work,rare-earth La^(3+)and non-magnetic Zr^(4+)ions are simultaneously incorporated into M-type barium ferrite(BaM)to intentionally manipulate the multi-magnetic resonance behavior.By leveraging the contrary impact of La^(3+)and Zr^(4+)ions on magnetocrystalline anisotropy field,the restrictive relationship between intensity and frequency of the multi-magnetic resonance is successfully eliminated.The magnetic resonance peak-differentiating and imitating results confirm that significant multi-magnetic resonance phenomenon emerges around 35 GHz due to the reinforced exchange coupling effect between Fe^(3+)and Fe^(2+)ions.Additionally,Mosbauer spectra analysis,first-principle calculations,and least square fitting collectively identify that additional La^(3+)doping leads to a profound rearrangement of Zr^(4+)occupation and thus makes the portion of polarization/conduction loss increase gradually.As a consequence,the La^(3+)-Zr^(4+)co-doped BaM achieves an ultra-broad bandwidth of 12.5+GHz covering from 27.5 to 40+GHz,which holds remarkable potential for millimeter-wave absorbers around the atmospheric window of 35 GHz.展开更多
The effect of pH values on synthesizing single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCoTiFe- 10O- 19, was investigated employing corrosion versus pH plot (E-pH plot) for metal element,...The effect of pH values on synthesizing single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCoTiFe- 10O- 19, was investigated employing corrosion versus pH plot (E-pH plot) for metal element, thermodynamic calculation, and co-dump coprecipitation. The pH values of complete coprecipitation of all Fe 3+, Ti 4+, Co 2+ and Ba 2+ cations are 9-12 and higher than 7.9 on the basis of E-pH plot analysis and thermodynamic calculation, respectively. The minimum pH value necessary to the formation of single-phase BaCoTiFe- 10O- 19 is 8.5 in the light of the co-dump coprecipitation.These results indicate that the coprecipitation process for synthesizing CoTi-substituted barium M-type ferrite ultrafine powders is simultaneously influenced by synergetic coprecipation effect of cations and coordination effect of Cl-anions. The test time of the minimum pH value corresponding to forming a series of single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCo-xTi-xFe- 12-2xO- 19, may be significantly reduced by using the effects of two new factors on the coprecipitation process.展开更多
With the most advanced Synchronous Radiation Photoelectron Spectrum(SRPS),the emission mechanism of M-type cathodes has been investigated from the perspective of chemical state.Based on the experimental results of SRP...With the most advanced Synchronous Radiation Photoelectron Spectrum(SRPS),the emission mechanism of M-type cathodes has been investigated from the perspective of chemical state.Based on the experimental results of SRPS analysis,a new model of the electron emission mechanism for M-type cathode is discussed.The main topics in this paper include the research status of electron emission mechanism of M-type cathodes;the advantages of SRPS technology;the distribution of oxygen chemical state on the cathode surface and the evolvement of oxygen chemical state during activation process;the relation between barium chemical state and osmium(Os)-coating;surplus barium and its formula;the characteristics of Os,and other noble metal coatings;the relation between film characteristics and emission performance of cathodes,the inhibition effects to the emission for Platinum(Pt)-coated cathode,etc.At the end of this paper,electron emission mechanism of M-type cathode is summarized and foreseen.展开更多
An M-type hexagonal ferrite BaTiCoFe10 O19 was prepared by solid phase reaction by a partial 2Fe3+→Ti4+ Co2+ substitution. The morphology observation and phase identification of BaTiCoFe10O19 were carried out by SEM ...An M-type hexagonal ferrite BaTiCoFe10 O19 was prepared by solid phase reaction by a partial 2Fe3+→Ti4+ Co2+ substitution. The morphology observation and phase identification of BaTiCoFe10O19 were carried out by SEM and XRD, and its X-ray powder diffraction data was reported in this paper for the first time. Further, the microwave electromagnetic properties of BaTiCoFe10O19 were measured and discussed.展开更多
基金supported by the Fundamental Research Program of the Korea Institute of Materials Science (PNK8330)the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (2020M3H4A3081843)。
文摘Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-dominant conductive materials. While there are few absorption-dominant shielding materials proposed with magnetic materials, their working frequencies are usually limited to under 30 GHz. In this study, a novel multi-band absorption-dominant EMI shielding film with M-type strontium ferrites and a conductive grid is proposed. This film shows ultralow EMI reflection of less than 5% in multiple mmWave frequency bands with sub-millimeter thicknesses, while shielding more than 99.9% of EMI. The ultralow reflection frequency bands are controllable by tuning the ferromagnetic resonance frequency of M-type strontium ferrites and composite layer geometries. Two examples of shielding films with ultralow reflection frequencies, one for 39 and 52 GHz 5G telecommunication bands and the other for 60 and 77 GHz autonomous radar bands, are presented. The remarkably low reflectance and thinness of the proposed films provide an important advancement toward the commercialization of EMI shielding materials for 5G mmWave applications.
基金The National Natural Science Foundation of China(No.51205282)
文摘In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.
基金supported by the National Natural Science Foundation of China(Nos.:52271180,51802155,12304020)National Key R&D Program of China(No.:2021YFB3502500)+2 种基金Natural Science Foundation of Jiangsu Province(BK20230909)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutionsthe Center for Microscopy and Analysis at Nanjing University of Aeronautics and Astronautics.
文摘The utilization of electromagnetic waves is rapidly advancing into the millimeter-wave frequency range,posing increasingly severe challenges in terms of electromagnetic pollution prevention and radar stealth.However,existing millimeter-wave absorbers are still inadequate in addressing these issues due to their monotonous magnetic resonance pattern.In this work,rare-earth La^(3+)and non-magnetic Zr^(4+)ions are simultaneously incorporated into M-type barium ferrite(BaM)to intentionally manipulate the multi-magnetic resonance behavior.By leveraging the contrary impact of La^(3+)and Zr^(4+)ions on magnetocrystalline anisotropy field,the restrictive relationship between intensity and frequency of the multi-magnetic resonance is successfully eliminated.The magnetic resonance peak-differentiating and imitating results confirm that significant multi-magnetic resonance phenomenon emerges around 35 GHz due to the reinforced exchange coupling effect between Fe^(3+)and Fe^(2+)ions.Additionally,Mosbauer spectra analysis,first-principle calculations,and least square fitting collectively identify that additional La^(3+)doping leads to a profound rearrangement of Zr^(4+)occupation and thus makes the portion of polarization/conduction loss increase gradually.As a consequence,the La^(3+)-Zr^(4+)co-doped BaM achieves an ultra-broad bandwidth of 12.5+GHz covering from 27.5 to 40+GHz,which holds remarkable potential for millimeter-wave absorbers around the atmospheric window of 35 GHz.
文摘The effect of pH values on synthesizing single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCoTiFe- 10O- 19, was investigated employing corrosion versus pH plot (E-pH plot) for metal element, thermodynamic calculation, and co-dump coprecipitation. The pH values of complete coprecipitation of all Fe 3+, Ti 4+, Co 2+ and Ba 2+ cations are 9-12 and higher than 7.9 on the basis of E-pH plot analysis and thermodynamic calculation, respectively. The minimum pH value necessary to the formation of single-phase BaCoTiFe- 10O- 19 is 8.5 in the light of the co-dump coprecipitation.These results indicate that the coprecipitation process for synthesizing CoTi-substituted barium M-type ferrite ultrafine powders is simultaneously influenced by synergetic coprecipation effect of cations and coordination effect of Cl-anions. The test time of the minimum pH value corresponding to forming a series of single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCo-xTi-xFe- 12-2xO- 19, may be significantly reduced by using the effects of two new factors on the coprecipitation process.
基金Supported by the National Natural Science Foundation of China(No.60871053)
文摘With the most advanced Synchronous Radiation Photoelectron Spectrum(SRPS),the emission mechanism of M-type cathodes has been investigated from the perspective of chemical state.Based on the experimental results of SRPS analysis,a new model of the electron emission mechanism for M-type cathode is discussed.The main topics in this paper include the research status of electron emission mechanism of M-type cathodes;the advantages of SRPS technology;the distribution of oxygen chemical state on the cathode surface and the evolvement of oxygen chemical state during activation process;the relation between barium chemical state and osmium(Os)-coating;surplus barium and its formula;the characteristics of Os,and other noble metal coatings;the relation between film characteristics and emission performance of cathodes,the inhibition effects to the emission for Platinum(Pt)-coated cathode,etc.At the end of this paper,electron emission mechanism of M-type cathode is summarized and foreseen.
基金Funded by Grant-in-Aid Project (No.2000-3) of Interna-tional Centre for Difiraction Data and Open Foundation of State Key Lab of Advanced Tech for Mater. Synthesis and Processing
文摘An M-type hexagonal ferrite BaTiCoFe10 O19 was prepared by solid phase reaction by a partial 2Fe3+→Ti4+ Co2+ substitution. The morphology observation and phase identification of BaTiCoFe10O19 were carried out by SEM and XRD, and its X-ray powder diffraction data was reported in this paper for the first time. Further, the microwave electromagnetic properties of BaTiCoFe10O19 were measured and discussed.