Constantine M. Dafermos has done extensive research at the interface of partial differential equations and continuum physics. He is a world leader in nonlinear hyperbolic conservation laws, where he introduced several...Constantine M. Dafermos has done extensive research at the interface of partial differential equations and continuum physics. He is a world leader in nonlinear hyperbolic conservation laws, where he introduced several fundamental methods in the subject including the methods of relative entropy, generalized characteristics, and wave-front tracking, as well as the entropy rate criterion for the selection of admissible wave fans. He has also made fundamental contributions on the mathematical theory of the equations of thermomechanics as it pertains in modeling and analysis of materials with memory, thermoelasticity, and thermoviscoelasticity. His work is distinctly characterized by an understanding of the fundamental issues of continuum physics and their role in developing new techniques of mathematical analysis.展开更多
目的探讨甲基转移酶5(methyltransferase-like 5,METTL5)在三阴乳腺癌(triple-negative breast cancer,TNBC)中的作用和潜在机制。方法采用免疫组织化学方法和Western blot检测TNBC肿瘤组织和细胞系中METTL5的表达情况。用靶向METTL5的s...目的探讨甲基转移酶5(methyltransferase-like 5,METTL5)在三阴乳腺癌(triple-negative breast cancer,TNBC)中的作用和潜在机制。方法采用免疫组织化学方法和Western blot检测TNBC肿瘤组织和细胞系中METTL5的表达情况。用靶向METTL5的shRNA(shRNA-METTL5)转染TNBC细胞后,用CCK-8、集落形成、伤口愈合以及Transwell实验分别检测细胞增殖活性、迁移与侵袭,Western blot检测Wnt/β-catenin信号关键蛋白的表达。构建异种移植瘤模型,验证敲降METTL5对TNBC细胞在体内生长以及Wnt/β-catenin信号活性的影响。结果METTL5在TNBC肿瘤组织和细胞系中表达上调(P<0.01)。敲降METTL5可抑制TNBC细胞的增殖、迁移和侵袭并降低了Wnt/β-catenin信号分子β-catenin、细胞周期蛋白(Cyclin)D1、基质金属蛋白酶(MMP)-2和MMP-7的表达(均P<0.01)。体内实验显示,敲降METTL5减缓了移植瘤生长和Wnt/β-catenin信号活性。结论敲降METTL5能抑制TNBC细胞的增殖、迁移与侵袭,其作用可能与抑制Wnt/β-catenin信号通路有关。展开更多
文摘Constantine M. Dafermos has done extensive research at the interface of partial differential equations and continuum physics. He is a world leader in nonlinear hyperbolic conservation laws, where he introduced several fundamental methods in the subject including the methods of relative entropy, generalized characteristics, and wave-front tracking, as well as the entropy rate criterion for the selection of admissible wave fans. He has also made fundamental contributions on the mathematical theory of the equations of thermomechanics as it pertains in modeling and analysis of materials with memory, thermoelasticity, and thermoviscoelasticity. His work is distinctly characterized by an understanding of the fundamental issues of continuum physics and their role in developing new techniques of mathematical analysis.