We examine systematically the observed X-ray luminosity jumps(or flares) from quiescent states in millisecond binary pulsars(MSBPs) and high-mass X-ray binary pulsars(HMXBPs). We rely on the published X-ray light curv...We examine systematically the observed X-ray luminosity jumps(or flares) from quiescent states in millisecond binary pulsars(MSBPs) and high-mass X-ray binary pulsars(HMXBPs). We rely on the published X-ray light curves of seven pulsars: four HMXBPs, two MSBPs and the ultraluminous X-ray pulsar M82 X-2. We discuss the physics of their flaring activities or lack thereof, paying special attention to their emission properties when they are found on the propeller line, inside the Corbet gap or near the light-cylinder barrier. We provide guiding principles for future interpretations of faint X-ray observations, as well as a method of constraining the propeller lines and the dipolar surface magnetic fields of pulsars using a variety of quiescent states. In the process, we clarify some disturbing inaccuracies that have made their way into the published literature.展开更多
基金supported by NASA grant NNX14-AF77Gsupported by a NASA ADAP grant
文摘We examine systematically the observed X-ray luminosity jumps(or flares) from quiescent states in millisecond binary pulsars(MSBPs) and high-mass X-ray binary pulsars(HMXBPs). We rely on the published X-ray light curves of seven pulsars: four HMXBPs, two MSBPs and the ultraluminous X-ray pulsar M82 X-2. We discuss the physics of their flaring activities or lack thereof, paying special attention to their emission properties when they are found on the propeller line, inside the Corbet gap or near the light-cylinder barrier. We provide guiding principles for future interpretations of faint X-ray observations, as well as a method of constraining the propeller lines and the dipolar surface magnetic fields of pulsars using a variety of quiescent states. In the process, we clarify some disturbing inaccuracies that have made their way into the published literature.