More than 160 types of post-transcriptional RNA modifications have been reported;there is substantial variation in modification type,abundance,site,and function across species,tissues,and RNA type.The recent developme...More than 160 types of post-transcriptional RNA modifications have been reported;there is substantial variation in modification type,abundance,site,and function across species,tissues,and RNA type.The recent development of high-throughput detection technology has enabled identification of diverse dynamic and reversible RNA modifications,including N6,2′-O-dimethyladenosine(m6Am),N1-methyladenosine(m1A),5-methylcytosine(m5C),N6-methyladenosine(m6A),pseudouridine(Ψ),and inosine(I).In this review,we focus on eukaryotic mRNA modifications.We summarize their biogenesis,regulatory mechanisms,and biological functions,as well as highthroughput methods for detection of mRNA modifications.We also discuss challenges that must be addressed in mRNA modification research.展开更多
基金the Ministry of Science and Technology of China(2019YFA0110902,2019YFA0802201)。
文摘More than 160 types of post-transcriptional RNA modifications have been reported;there is substantial variation in modification type,abundance,site,and function across species,tissues,and RNA type.The recent development of high-throughput detection technology has enabled identification of diverse dynamic and reversible RNA modifications,including N6,2′-O-dimethyladenosine(m6Am),N1-methyladenosine(m1A),5-methylcytosine(m5C),N6-methyladenosine(m6A),pseudouridine(Ψ),and inosine(I).In this review,we focus on eukaryotic mRNA modifications.We summarize their biogenesis,regulatory mechanisms,and biological functions,as well as highthroughput methods for detection of mRNA modifications.We also discuss challenges that must be addressed in mRNA modification research.