It is generally agreed that appropriate content of boron is beneficial to mechanical properties of many superalloys. In an effort to improve stress rupture properties of a new superalloy M951, the content of boron is ...It is generally agreed that appropriate content of boron is beneficial to mechanical properties of many superalloys. In an effort to improve stress rupture properties of a new superalloy M951, the content of boron is optimized. Stress rupture tests were carried out using a FC-20 high temperature creep testing machine. The micro- structure, fracture surface and dislocation structure were investigated by optical microscopy, scanning electron microscopy and transmitting electron microscopy. The results indicate that the addition of boron improves the stress-rupture life at 1100℃ and 40MPa, but does not affect elongation remarkably. The stress-rupture life is the longest when the content of boron is 0.024%. Boron also enhances the tensile ductility and has no obvious effect on the tensile strength.展开更多
The isothermal and cyclic oxidation behaviors in air and hot corrosion behaviors in Na2SO4 + 25 wt% K2SO4 salt of M951 cast superalloy and a sputtered nanocrystalline coating of the same material were studied. Scanni...The isothermal and cyclic oxidation behaviors in air and hot corrosion behaviors in Na2SO4 + 25 wt% K2SO4 salt of M951 cast superalloy and a sputtered nanocrystalline coating of the same material were studied. Scanning electron microscopy, energy dispersive X-ray spectroscope, X-ray diffraction, and transmission electron microscopy were employed to examine the morphologies and phase composition of the M951 alloy and nanocrystalline coating before and after oxidation and hot corrosion. The as-sputtered nanocrystalline layer has a homogeneous y phase structure of very fine grain size (30-200 nm) with the preferential growth texture of (111) parallel to the interface. Adherent AI203 rich oxide scale formed on the cast M951 alloy and its sputtered coating after isothermal oxidation at 900 and 1000 ℃. However, when being isothermal oxidized at 1100℃ and cyclic oxidized at 1000 ℃, the oxide scale formed on the cast alloy was a mixture of NiO, NiAl2O4, Al2O3 and Nb205 and spalled seriously, while that formed on the sputtered coating mainly consisted of Al2O3 and was very adherent. Nanocrystallization promoted rapid formation of Al2O3 scale during the early stage of oxidation and enhanced the adhesion of the oxide scale, thus improved the oxidation resistance of the substrate alloy. Serious corrosion occurred for the cast alloy. The sputtered nanocrystalline coating apparently improved the hot corrosion resistance of the cast alloy in the mixed sulfate by the formation of a continuous Al2O3 and Cr2O3 mixed oxide layer on the surface of the coating, and the pre- oxidation treatment of the coating led to an even better effect.展开更多
Fusion weld is a portable and economical joining and repairing method of metals.However,weld cracks often occur during the fusion weld of Ni-base superalloys,which hinder the applications of fusion weld on this kind o...Fusion weld is a portable and economical joining and repairing method of metals.However,weld cracks often occur during the fusion weld of Ni-base superalloys,which hinder the applications of fusion weld on this kind of materials.In this work,the effects of microstructures of grain boundaries(GBs)of the prototype M951 superalloy on its weldability were investigated.The precipitated phases,the elemental segregations on GBs,and the morphologies of GBs can be largely altered by regulating the cooling rates of pre-weld heat treatments.With decreasing the cooling rate,chain-like M_(23)X_(6)phase precipitates along the GBs,accompanying segregations of B,and GBs becomes more serrated in morphology.During fusion weld,the engineered GBs in the M951 superalloy with a low cooling rate favor the formation of the continuous liquid films on GBs,which together with the serrated GB morphology significantly prevents the formation of weld cracks.Our findings imply that the weld-crack resistance of the superalloys can be ameliorated by engineering GBs.展开更多
文摘It is generally agreed that appropriate content of boron is beneficial to mechanical properties of many superalloys. In an effort to improve stress rupture properties of a new superalloy M951, the content of boron is optimized. Stress rupture tests were carried out using a FC-20 high temperature creep testing machine. The micro- structure, fracture surface and dislocation structure were investigated by optical microscopy, scanning electron microscopy and transmitting electron microscopy. The results indicate that the addition of boron improves the stress-rupture life at 1100℃ and 40MPa, but does not affect elongation remarkably. The stress-rupture life is the longest when the content of boron is 0.024%. Boron also enhances the tensile ductility and has no obvious effect on the tensile strength.
基金financially supported by the National Natural Science Foundation of China(No.51071163)the National Key Basic Research and Development Program("973 Program",Nos.2010CB631206 and 2012CB625100)the National High Technology Research and Development Program of China(No.2012AA03A512)
文摘The isothermal and cyclic oxidation behaviors in air and hot corrosion behaviors in Na2SO4 + 25 wt% K2SO4 salt of M951 cast superalloy and a sputtered nanocrystalline coating of the same material were studied. Scanning electron microscopy, energy dispersive X-ray spectroscope, X-ray diffraction, and transmission electron microscopy were employed to examine the morphologies and phase composition of the M951 alloy and nanocrystalline coating before and after oxidation and hot corrosion. The as-sputtered nanocrystalline layer has a homogeneous y phase structure of very fine grain size (30-200 nm) with the preferential growth texture of (111) parallel to the interface. Adherent AI203 rich oxide scale formed on the cast M951 alloy and its sputtered coating after isothermal oxidation at 900 and 1000 ℃. However, when being isothermal oxidized at 1100℃ and cyclic oxidized at 1000 ℃, the oxide scale formed on the cast alloy was a mixture of NiO, NiAl2O4, Al2O3 and Nb205 and spalled seriously, while that formed on the sputtered coating mainly consisted of Al2O3 and was very adherent. Nanocrystallization promoted rapid formation of Al2O3 scale during the early stage of oxidation and enhanced the adhesion of the oxide scale, thus improved the oxidation resistance of the substrate alloy. Serious corrosion occurred for the cast alloy. The sputtered nanocrystalline coating apparently improved the hot corrosion resistance of the cast alloy in the mixed sulfate by the formation of a continuous Al2O3 and Cr2O3 mixed oxide layer on the surface of the coating, and the pre- oxidation treatment of the coating led to an even better effect.
基金the National Natural Science Foundation of China(Nos.51971214,51771191 and 51801206)the Aeronautics Power Foundation of China(No.DLJJ1825)。
文摘Fusion weld is a portable and economical joining and repairing method of metals.However,weld cracks often occur during the fusion weld of Ni-base superalloys,which hinder the applications of fusion weld on this kind of materials.In this work,the effects of microstructures of grain boundaries(GBs)of the prototype M951 superalloy on its weldability were investigated.The precipitated phases,the elemental segregations on GBs,and the morphologies of GBs can be largely altered by regulating the cooling rates of pre-weld heat treatments.With decreasing the cooling rate,chain-like M_(23)X_(6)phase precipitates along the GBs,accompanying segregations of B,and GBs becomes more serrated in morphology.During fusion weld,the engineered GBs in the M951 superalloy with a low cooling rate favor the formation of the continuous liquid films on GBs,which together with the serrated GB morphology significantly prevents the formation of weld cracks.Our findings imply that the weld-crack resistance of the superalloys can be ameliorated by engineering GBs.