The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The r...The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.展开更多
The layered Li[Ni1/3Mn1/3Co1/3]O2 was separately synthesized by pretreatment process of ball mill method and solution phase route, using [Ni1/3Co1/3Mn1/3]3O4 and lithium hydroxide as raw materials. The physical and el...The layered Li[Ni1/3Mn1/3Co1/3]O2 was separately synthesized by pretreatment process of ball mill method and solution phase route, using [Ni1/3Co1/3Mn1/3]3O4 and lithium hydroxide as raw materials. The physical and electrochemical behaviors of Li[Ni1/3Mn1/3Co1/3]O2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and electrochemical charge/discharge cycling tests. The results show that the difference in pretreatment process results in the difference in compound Li[Ni1/3Co1/3Mn1/3]O2 structure, morphology and the electrochemical characteristics. The Li[Ni1/3Mn1/3Co1/3]O2 prepared by solution phase route maintains the uniform spherical morphology of the [Ni1/3Co1/3Mn1/3]3O4, and it exhibits a higher capacity retention and better rate capability than that prepared by ball mill method. The initial discharge capacity of this sample reaches 178 mA-h/g and the capacity retention after 50 cycles is 98.7% at a current density of 20 mA/g. Moreover, it delivers high discharge capacity of 135 mA-h/g at a current density of 1 000 mA/g.展开更多
Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,espec...Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,especially in the case of soil archaea.Here,we conducted a study on soil abundant and rare archaeal taxa during the growing and non-growing seasons in the active layer of alpine permafrost in the Qinghai-Tibetan Plateau.The results suggested that,for the archaeal communities in the sub-layer,abundant taxa exhibited higher diversity,while rare taxa maintained a more stable composition from the growing to non-growing season.Water soluble organic carbon and soil porosity were the most significant environmental variables affecting the compositions of abundant and rare taxa,respectively.Stochastic and deterministic processes dominated the assemblies of rare and abundant taxa,respectively.The archaeal ecological network influenced N_(2)O flux through different modules.Rare taxa performed an essential role in stabilizing the network and exerting important effects on N_(2)O flux.Our study provides a pioneering and comprehensive investigation aimed at unravelling the mechanisms by which archaea or other microorganisms influence greenhouse gas emissions in the alpine permafrost.展开更多
The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount...The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount on degradation of formaldehyde gas were investigated. The experimental results indicated that the combination of ozonation with photocatalytic oxidation on the degradation of formaldehyde showed a synergetic action, e.g,, it could considerably increase decomposing of formaldehyde. The degradation efficiency of formaldehyde was between 73.6% and 79.4% while the initial concentration in the range of 1.84--24 mg/m^3 by O3/TiO2flJV process. The optimal humidity was about 50% in UV/TiO2/O3 processs and degradation of formaldehyde increases from 39.0% to 94.1% when the ozone content increased from 0 to 141 mg/m^3. Furthermore, the kinetics of formaldehyde degradation reaction could be described by Langmuir-Hinshelwood model. The rate constant k of 46.72 mg/(m^3.min) and Langmuir adsorption coefficient K of 0.0268 m^3/mg were obtained.展开更多
Nitroaromatic compounds such as nitrobenzene and nitrophenols are largely synthesised and particularly often occur in water bodies as toxic pollutants. The degradation of these compounds in the environment via direct ...Nitroaromatic compounds such as nitrobenzene and nitrophenols are largely synthesised and particularly often occur in water bodies as toxic pollutants. The degradation of these compounds in the environment via direct photolysis and by biological treatment is difficult and usually slow. In our two previous published papers, we have discussed the advanced oxidation of nitrobenzene and nitrophenols in aqueous solutions irradiated by direct photolysis using polychromatic light and by means of UV/H2O2 process. The experimental results suggested the UV/H2O2 process is an effective and efficient technology for complete mineralization of these organic compounds. Based on the results therein, comprehensive reaction mechanism for nitrobenzene photolysis was proposed with detailed discussions.展开更多
The nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5,molar fraction) fibers with fine diameters and high aspect ratios(length to diameter ratios) were prepared by the organic gel-thermal decomposition process from...The nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5,molar fraction) fibers with fine diameters and high aspect ratios(length to diameter ratios) were prepared by the organic gel-thermal decomposition process from citric acid and metal salts.The structures and morphologies of gel precursors and fibers derived from thermal decomposition of the gel precursors were characterized by Fourier transform infrared spectroscopy,X-ray diffractometry and scanning electron microscopy.The magnetic properties of the nanocomposite fibers were measured by vibrating sample magnetometer.The nanocomposite fibers consisting of ferrite(CoFe2O4) and perovskite(BaTiO3) are formed at the calcination temperature of 900 ℃ for 2 h.The average grain sizes of CoFe2O4 and BaTiO3 in the nanocomposite fibers increase from 25 to 65 nm with the calcination temperature from 900 to 1 180 ℃.The single fiber constructed from these nanograins of CoFe2O4 and BaTiO3 has a necklace-like morphology.The saturation magnetization of the nanocomposite 0.4CoFe2O4-0.6BaTiO3 fibers increases with the increase of CoFe2O4 grain size,while the coercivity reaches a maximum value when the average grain size of CoFe2O4 is around the critical single-domain size of 45 nm obtained at 1 000 ℃.The saturation magnetization and remanence of the nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5) fibers almost exhibit a linear relationship with the molar fraction of CoFe2O4 in the nanocomposites.展开更多
Photodegradation of nitrobenzene and nitrophenols in aqueous solutions by means of UV/H2 O2 process was studied in the Rayox batch reactors. Three nitrophenol isomers were identified as main photoproducts in the irrad...Photodegradation of nitrobenzene and nitrophenols in aqueous solutions by means of UV/H2 O2 process was studied in the Rayox batch reactors. Three nitrophenol isomers were identified as main photoproducts in the irradiated NB aqueous solutions. The distribution of nitrophenol isomers follows the order p-〉 m-〉 o-nitrophenol. Other intermediates detected include nitrohydroquinone, nitrocatechol, catechol, benzoquinone, phenol, nitrate/nitrite ions, formic acid, glyoxylic acid, maleic acid, oxalic acid and some aliphatic ketones and aldehydes. The degradation of nitrobenzene and nitrophenols at initial stages follows the first-order kinetics and the decay rate constants for nitrobenzene(NB) are around l0^-3-10^-2 s^-1 and for nitrophenols are around 10^-2 s^-1. The decomposition of H2 O2 in the presence of NB and each nitrophenol isomers follows zero-order kinetics. The quantum yields at initial stages for NB decay were estimated around 0.30 to 0.36, and for NPs decay is around 0.31-0.54.展开更多
Spherical Bi2O3 powder prepared by plasma chemical vapor reaction and aqueous chemical precipitation is studied. The superfine spherical Bi2O3 powder with an average diameter of 1 μm is made by plasma process. During...Spherical Bi2O3 powder prepared by plasma chemical vapor reaction and aqueous chemical precipitation is studied. The superfine spherical Bi2O3 powder with an average diameter of 1 μm is made by plasma process. During the precipitation process, the micrograph of the Bi2O3 powder can be controlled through the reaction temperature, the rate of addition of the precipitation reagent, the reaction time and the amount of the dispersant. Accordingly, spherical Bi2O3 powder with diameters ranging from 2μm to 3μm is prepared. The spherical Bi2O3 particles have such advantages as uniform size distribution and excellent dispersing property. ZnO varistors made from the resultant powder exhibit properties of a low discharge voltage ratio, great eligibility coefficient measured by a rectangle wave of 2 ins 800 A and good stability in the above characteristics.展开更多
Direct propylene epoxidation with H2 and O2,an attractive process to produce propylene oxide(PO),has a potential explosion danger due to the coexistence of flammable gases(i.e.,C3 H6 and H2)and oxidizer(i.e.,O2).The u...Direct propylene epoxidation with H2 and O2,an attractive process to produce propylene oxide(PO),has a potential explosion danger due to the coexistence of flammable gases(i.e.,C3 H6 and H2)and oxidizer(i.e.,O2).The unknown explosion limits of the multi-component feed gas mixture make it difficult to optimize the reaction process under safe operation conditions.In this work,a distribution method is proposed and verified to be effective by comparing estimated and experimental explosion limits of more than 200 kinds of flammable gas mixture.Then,it is employed to estimate the explosion limits of the feed gas mixture,some results of which are also validated by the classic Le Chatelier’s Rule and flammable resistance method.Based on the estimated explosion limits,process optimization is carried out using commercially high and inherently safe reactant concentrations to enhance reaction performance.The promising results are directly obtained through the interface called gOPT in gPROMS only by using a simple,easy-constructed and mature packed-bed reactor,such as the PO yield of 13.3%,PO selectivity of 85.1%and outlet PO fraction of 1.8%.These results can be rationalized by indepth analyses and discussion about the effects of the decision variables on the operation safety and reaction performance.The insights revealed here could shed new light on the process development of the PO production based on the estimation of the explosion limits of the multi-component feed gas mixture containing flammable gase s,inert gas and O2,followed by process optimization.展开更多
Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted expl...Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one展开更多
We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid...We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.展开更多
Ag/γ-Al2O3 is a kind of promising catalyst with the relatively lower cost compared with those using noble metals,good resistance against catalytic poisoning and excellent behaviour for NOx removal.In the present stud...Ag/γ-Al2O3 is a kind of promising catalyst with the relatively lower cost compared with those using noble metals,good resistance against catalytic poisoning and excellent behaviour for NOx removal.In the present study,Ag/γ-Al2O3 catalysts were synthesized by the solvothermal process and characterized by XRD,TG?DTA,TEM,UV?Vis and FT?IR.It was found that high-performance Ag/γ-Al2O3 catalysts could be synthesized by properly selecting starting materials,controlling the composition of solvent and other reaction conditions.The microstructure evolution of the catalysts was also discussed.展开更多
Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a co...Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a commercial grade alloy which is used for various industrial applications like sleeves, nuts, bolts, shafts, etc. EN24 is having comparatively low corrosion resistance, and ceramic coating of the wear and corroding areas of such parts is a best followed practice which highly improves the frequent failures. The coating quality mainly depends on the coating thickness, surface roughness and coating hardness which finally decides the operability. This paper describes an experimental investigation to effectively optimize the Atmospheric Plasma Spray process input parameters of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> coatings to get the best quality of coating on EN24 alloy steel substrate. The experiments are conducted with an Orthogonal Array (OA) design of experiments (DoE). In the current experiment, critical input parameters are considered and some of the vital output parameters are monitored accordingly and separate mathematical models are generated using regression analysis. The Analytic Hierarchy Process (AHP) method is used to generate weights for the individual objective functions and based on that, a combined objective function is made. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is practically utilized to the combined objective function to optimize the values of input parameters to get the best output parameters. Confirmation tests are also conducted and their output results are compared with predicted values obtained through mathematical models. The dominating effects of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> spray parameters on output parameters: surface roughness, coating thickness and coating hardness are discussed in detail. It is concluded that the input parameters variation directly affects the characteristics of output parameters and any number of input as well as output parameters can be easily optimized using the current approach.展开更多
A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (D...A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal and enhance the denitrifying phosphorus removal in A2O bioreactors. Sludge analysis confirmed that the average anoxic P uptake accounted for approximately 70% the total amount of P uptake, and the ratio of anoxic P uptake rate to aerobic P uptake rate was 69%. In addition, nitrate concentration in the anoxic phase and different organic substrate introduced into the anaerobic phase had significant effect on the anoxic P uptake. Compared with conventional A2O processes, good removal efficiencies of COD, phosphorus, ammonia and total nitrogen (92.3%, 95.5%, 96% and 79.5%, respectively) could be achieved in the anoxic P uptake system, and aeration energy consumption was saved 25%. By controlling the nitrate recirculation flow in the anoxic zone, anoxic P uptake could be enhanced, which solved the competition for organic substrates among poly-P organisms and denitrifiers successfully under the COD limiting conditions. Therefore, in wastewater treatment plants the control system should be applied according to the practical situation to optimize the operation.展开更多
In situ Al2O3 whiskers reinforced Ti-Al intermetallic composites were fabricated at ~1200℃ by reaction sintering of cold-consolidated fillets consisting mainly of Ti, Al, and different additives. The phases and micro...In situ Al2O3 whiskers reinforced Ti-Al intermetallic composites were fabricated at ~1200℃ by reaction sintering of cold-consolidated fillets consisting mainly of Ti, Al, and different additives. The phases and microstructures of the sintered composites were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The process of synthesis was investigated using differential thermal analysis (DTA). The effects of processing parameters and additives on the microstructures of the composites and the development of whisker were examined. It is found that the morphology of the whisker is strongly influenced by the additives, the exothermal reaction process, and the processing parameters.展开更多
Surface metal matrix composite is produced on the as cast Magnesium Rare Earth alloy-RZ 5 by single pass friction stir processing using various micro/nano sized reinforcement particles namely Boron Carbide(B_(4)C),Mul...Surface metal matrix composite is produced on the as cast Magnesium Rare Earth alloy-RZ 5 by single pass friction stir processing using various micro/nano sized reinforcement particles namely Boron Carbide(B_(4)C),Multi Walled Carbon Nano Tubes(MWCNTs),and a mixture of ZrO_(2)+Al_(2)O_(3)particles.Fine grained metal matrix composites having the grain size ranging 0.8μm to 1.87μm are achieved.Grain boundary pinning by the reinforcement particles has resulted in the transformation of coarse grained(∼81μm)base material into fine grained(<1μm)metal matrix composite.Finer grain structure and the presence of reinforcements at the stir zone have resulted in increased and improved mechanical properties of the developed composites.Microhardness ranging between 125 HV and 403 HV is achieved.Uni-axial Tensile Testing of the developed composites exhibited improvement in tensile strength.Metal matrix composites developed using various reinforcements exhibited an increase in strength ranges between 250 MPa and 320 MPa.展开更多
基金Project(2012AA030311)supported by the National High-tech Research and Development Program of ChinaProject(2010BB4074)supported by the Natural Science Foundation of Chongqing Municipality,ChinaProject(2010ZD-02)supported by the State Key Laboratory for Advanced Metals and Materials,China
文摘The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.
基金Project(20871101)supported by the National Natural Science Foundation of ChinaProject(2009WK2007)supported by Key Project of Science and Technology Department of Hunan Province,ChinaProject(CX2009B133)supported by Colleges and Universities in Hunan Province Plans to Graduate Research and Innovation,China
文摘The layered Li[Ni1/3Mn1/3Co1/3]O2 was separately synthesized by pretreatment process of ball mill method and solution phase route, using [Ni1/3Co1/3Mn1/3]3O4 and lithium hydroxide as raw materials. The physical and electrochemical behaviors of Li[Ni1/3Mn1/3Co1/3]O2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and electrochemical charge/discharge cycling tests. The results show that the difference in pretreatment process results in the difference in compound Li[Ni1/3Co1/3Mn1/3]O2 structure, morphology and the electrochemical characteristics. The Li[Ni1/3Mn1/3Co1/3]O2 prepared by solution phase route maintains the uniform spherical morphology of the [Ni1/3Co1/3Mn1/3]3O4, and it exhibits a higher capacity retention and better rate capability than that prepared by ball mill method. The initial discharge capacity of this sample reaches 178 mA-h/g and the capacity retention after 50 cycles is 98.7% at a current density of 20 mA/g. Moreover, it delivers high discharge capacity of 135 mA-h/g at a current density of 1 000 mA/g.
基金This work was supported by Gansu Provincial Science and Technology Program(22ZD6FA005)"Light of the West"Cross-team Project of the Chinese Academy of Sciences(xbzgzdsys-202214)+1 种基金the National Natural Science Foundation of China(41871064)Qinghai Province High-level Innovative"Thousand Talents"Program.
文摘Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,especially in the case of soil archaea.Here,we conducted a study on soil abundant and rare archaeal taxa during the growing and non-growing seasons in the active layer of alpine permafrost in the Qinghai-Tibetan Plateau.The results suggested that,for the archaeal communities in the sub-layer,abundant taxa exhibited higher diversity,while rare taxa maintained a more stable composition from the growing to non-growing season.Water soluble organic carbon and soil porosity were the most significant environmental variables affecting the compositions of abundant and rare taxa,respectively.Stochastic and deterministic processes dominated the assemblies of rare and abundant taxa,respectively.The archaeal ecological network influenced N_(2)O flux through different modules.Rare taxa performed an essential role in stabilizing the network and exerting important effects on N_(2)O flux.Our study provides a pioneering and comprehensive investigation aimed at unravelling the mechanisms by which archaea or other microorganisms influence greenhouse gas emissions in the alpine permafrost.
基金Project supported by the Science Project of Harbin City(No. H2001-12)the Youth Foundation of School of Municipal and Environmental Engineering in Harbin Institute of Technology(No. 01306914).
文摘The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount on degradation of formaldehyde gas were investigated. The experimental results indicated that the combination of ozonation with photocatalytic oxidation on the degradation of formaldehyde showed a synergetic action, e.g,, it could considerably increase decomposing of formaldehyde. The degradation efficiency of formaldehyde was between 73.6% and 79.4% while the initial concentration in the range of 1.84--24 mg/m^3 by O3/TiO2flJV process. The optimal humidity was about 50% in UV/TiO2/O3 processs and degradation of formaldehyde increases from 39.0% to 94.1% when the ozone content increased from 0 to 141 mg/m^3. Furthermore, the kinetics of formaldehyde degradation reaction could be described by Langmuir-Hinshelwood model. The rate constant k of 46.72 mg/(m^3.min) and Langmuir adsorption coefficient K of 0.0268 m^3/mg were obtained.
文摘Nitroaromatic compounds such as nitrobenzene and nitrophenols are largely synthesised and particularly often occur in water bodies as toxic pollutants. The degradation of these compounds in the environment via direct photolysis and by biological treatment is difficult and usually slow. In our two previous published papers, we have discussed the advanced oxidation of nitrobenzene and nitrophenols in aqueous solutions irradiated by direct photolysis using polychromatic light and by means of UV/H2O2 process. The experimental results suggested the UV/H2O2 process is an effective and efficient technology for complete mineralization of these organic compounds. Based on the results therein, comprehensive reaction mechanism for nitrobenzene photolysis was proposed with detailed discussions.
基金Project(50674048) supported by the National Natural Science Foundation of China Project(20080431069) supported by China Postdoctoral Science FoundationProject(CX10B-257Z) supported by Postgraduate Cultivation and Innovation Foundation of Jiangsu Province,China
文摘The nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5,molar fraction) fibers with fine diameters and high aspect ratios(length to diameter ratios) were prepared by the organic gel-thermal decomposition process from citric acid and metal salts.The structures and morphologies of gel precursors and fibers derived from thermal decomposition of the gel precursors were characterized by Fourier transform infrared spectroscopy,X-ray diffractometry and scanning electron microscopy.The magnetic properties of the nanocomposite fibers were measured by vibrating sample magnetometer.The nanocomposite fibers consisting of ferrite(CoFe2O4) and perovskite(BaTiO3) are formed at the calcination temperature of 900 ℃ for 2 h.The average grain sizes of CoFe2O4 and BaTiO3 in the nanocomposite fibers increase from 25 to 65 nm with the calcination temperature from 900 to 1 180 ℃.The single fiber constructed from these nanograins of CoFe2O4 and BaTiO3 has a necklace-like morphology.The saturation magnetization of the nanocomposite 0.4CoFe2O4-0.6BaTiO3 fibers increases with the increase of CoFe2O4 grain size,while the coercivity reaches a maximum value when the average grain size of CoFe2O4 is around the critical single-domain size of 45 nm obtained at 1 000 ℃.The saturation magnetization and remanence of the nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5) fibers almost exhibit a linear relationship with the molar fraction of CoFe2O4 in the nanocomposites.
文摘Photodegradation of nitrobenzene and nitrophenols in aqueous solutions by means of UV/H2 O2 process was studied in the Rayox batch reactors. Three nitrophenol isomers were identified as main photoproducts in the irradiated NB aqueous solutions. The distribution of nitrophenol isomers follows the order p-〉 m-〉 o-nitrophenol. Other intermediates detected include nitrohydroquinone, nitrocatechol, catechol, benzoquinone, phenol, nitrate/nitrite ions, formic acid, glyoxylic acid, maleic acid, oxalic acid and some aliphatic ketones and aldehydes. The degradation of nitrobenzene and nitrophenols at initial stages follows the first-order kinetics and the decay rate constants for nitrobenzene(NB) are around l0^-3-10^-2 s^-1 and for nitrophenols are around 10^-2 s^-1. The decomposition of H2 O2 in the presence of NB and each nitrophenol isomers follows zero-order kinetics. The quantum yields at initial stages for NB decay were estimated around 0.30 to 0.36, and for NPs decay is around 0.31-0.54.
基金Technology Innovation Foundation of Middle-minor Enterprises of Science and Technology from Ministryof Science and Technology (No. 19995103020074, 20003403023018)
文摘Spherical Bi2O3 powder prepared by plasma chemical vapor reaction and aqueous chemical precipitation is studied. The superfine spherical Bi2O3 powder with an average diameter of 1 μm is made by plasma process. During the precipitation process, the micrograph of the Bi2O3 powder can be controlled through the reaction temperature, the rate of addition of the precipitation reagent, the reaction time and the amount of the dispersant. Accordingly, spherical Bi2O3 powder with diameters ranging from 2μm to 3μm is prepared. The spherical Bi2O3 particles have such advantages as uniform size distribution and excellent dispersing property. ZnO varistors made from the resultant powder exhibit properties of a low discharge voltage ratio, great eligibility coefficient measured by a rectangle wave of 2 ins 800 A and good stability in the above characteristics.
基金Supported by the National Natural Science Foundation of China(91434117,21776077)the Shanghai Rising-Star Program(17QA1401200)+1 种基金the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Open Project of State Key Laboratory of Chemical Engineering(SKL-Che-15C03).
文摘Direct propylene epoxidation with H2 and O2,an attractive process to produce propylene oxide(PO),has a potential explosion danger due to the coexistence of flammable gases(i.e.,C3 H6 and H2)and oxidizer(i.e.,O2).The unknown explosion limits of the multi-component feed gas mixture make it difficult to optimize the reaction process under safe operation conditions.In this work,a distribution method is proposed and verified to be effective by comparing estimated and experimental explosion limits of more than 200 kinds of flammable gas mixture.Then,it is employed to estimate the explosion limits of the feed gas mixture,some results of which are also validated by the classic Le Chatelier’s Rule and flammable resistance method.Based on the estimated explosion limits,process optimization is carried out using commercially high and inherently safe reactant concentrations to enhance reaction performance.The promising results are directly obtained through the interface called gOPT in gPROMS only by using a simple,easy-constructed and mature packed-bed reactor,such as the PO yield of 13.3%,PO selectivity of 85.1%and outlet PO fraction of 1.8%.These results can be rationalized by indepth analyses and discussion about the effects of the decision variables on the operation safety and reaction performance.The insights revealed here could shed new light on the process development of the PO production based on the estimation of the explosion limits of the multi-component feed gas mixture containing flammable gase s,inert gas and O2,followed by process optimization.
文摘Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one
文摘We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.
基金Supported by a Grant-in-Aid for the COE project,Giant Molecules and Complex Systems2004,Ministry of Education,Culture,Sports,Science and Technology of Japan.National Natural Scientific Foundation of China(No.50174050)
文摘Ag/γ-Al2O3 is a kind of promising catalyst with the relatively lower cost compared with those using noble metals,good resistance against catalytic poisoning and excellent behaviour for NOx removal.In the present study,Ag/γ-Al2O3 catalysts were synthesized by the solvothermal process and characterized by XRD,TG?DTA,TEM,UV?Vis and FT?IR.It was found that high-performance Ag/γ-Al2O3 catalysts could be synthesized by properly selecting starting materials,controlling the composition of solvent and other reaction conditions.The microstructure evolution of the catalysts was also discussed.
文摘Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a commercial grade alloy which is used for various industrial applications like sleeves, nuts, bolts, shafts, etc. EN24 is having comparatively low corrosion resistance, and ceramic coating of the wear and corroding areas of such parts is a best followed practice which highly improves the frequent failures. The coating quality mainly depends on the coating thickness, surface roughness and coating hardness which finally decides the operability. This paper describes an experimental investigation to effectively optimize the Atmospheric Plasma Spray process input parameters of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> coatings to get the best quality of coating on EN24 alloy steel substrate. The experiments are conducted with an Orthogonal Array (OA) design of experiments (DoE). In the current experiment, critical input parameters are considered and some of the vital output parameters are monitored accordingly and separate mathematical models are generated using regression analysis. The Analytic Hierarchy Process (AHP) method is used to generate weights for the individual objective functions and based on that, a combined objective function is made. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is practically utilized to the combined objective function to optimize the values of input parameters to get the best output parameters. Confirmation tests are also conducted and their output results are compared with predicted values obtained through mathematical models. The dominating effects of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> spray parameters on output parameters: surface roughness, coating thickness and coating hardness are discussed in detail. It is concluded that the input parameters variation directly affects the characteristics of output parameters and any number of input as well as output parameters can be easily optimized using the current approach.
基金Supported by Key Technology Research and Development Program of the Tenthfive-year plan (2001BA610A-09), the NationalNatural Science Foundation of China (No. 50478040) and 863 Hi-Technology Research and Development Program of China(No.2004AA601020)
文摘A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal and enhance the denitrifying phosphorus removal in A2O bioreactors. Sludge analysis confirmed that the average anoxic P uptake accounted for approximately 70% the total amount of P uptake, and the ratio of anoxic P uptake rate to aerobic P uptake rate was 69%. In addition, nitrate concentration in the anoxic phase and different organic substrate introduced into the anaerobic phase had significant effect on the anoxic P uptake. Compared with conventional A2O processes, good removal efficiencies of COD, phosphorus, ammonia and total nitrogen (92.3%, 95.5%, 96% and 79.5%, respectively) could be achieved in the anoxic P uptake system, and aeration energy consumption was saved 25%. By controlling the nitrate recirculation flow in the anoxic zone, anoxic P uptake could be enhanced, which solved the competition for organic substrates among poly-P organisms and denitrifiers successfully under the COD limiting conditions. Therefore, in wastewater treatment plants the control system should be applied according to the practical situation to optimize the operation.
基金This work was supported by the National Natural Science Foundation of China (No. 50432010, 50372037).
文摘In situ Al2O3 whiskers reinforced Ti-Al intermetallic composites were fabricated at ~1200℃ by reaction sintering of cold-consolidated fillets consisting mainly of Ti, Al, and different additives. The phases and microstructures of the sintered composites were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The process of synthesis was investigated using differential thermal analysis (DTA). The effects of processing parameters and additives on the microstructures of the composites and the development of whisker were examined. It is found that the morphology of the whisker is strongly influenced by the additives, the exothermal reaction process, and the processing parameters.
文摘Surface metal matrix composite is produced on the as cast Magnesium Rare Earth alloy-RZ 5 by single pass friction stir processing using various micro/nano sized reinforcement particles namely Boron Carbide(B_(4)C),Multi Walled Carbon Nano Tubes(MWCNTs),and a mixture of ZrO_(2)+Al_(2)O_(3)particles.Fine grained metal matrix composites having the grain size ranging 0.8μm to 1.87μm are achieved.Grain boundary pinning by the reinforcement particles has resulted in the transformation of coarse grained(∼81μm)base material into fine grained(<1μm)metal matrix composite.Finer grain structure and the presence of reinforcements at the stir zone have resulted in increased and improved mechanical properties of the developed composites.Microhardness ranging between 125 HV and 403 HV is achieved.Uni-axial Tensile Testing of the developed composites exhibited improvement in tensile strength.Metal matrix composites developed using various reinforcements exhibited an increase in strength ranges between 250 MPa and 320 MPa.