Zn0.99Co0.01O nano-needles are synthesized by using pure ZnO powder as the starting material via chemical reactions in ammonia aqueous solution. The nano-needles show the room-temperature ferromagnetism (RTFM) chara...Zn0.99Co0.01O nano-needles are synthesized by using pure ZnO powder as the starting material via chemical reactions in ammonia aqueous solution. The nano-needles show the room-temperature ferromagnetism (RTFM) characterized by using a superconducting quantum interference device. Non-reductive chemical synthesis steps ensure to prevent forming Co-metal nanoclusters within the doped sample. All the results of thermal gravimetric analysis, Fourier transform infrared spectroscopy, x-ray diffraction and ultraviolet spectroscopy demonstrate that Co ions have doped into ZnO lattices and occupied some Zn sites without changing the wurtzite structure of ZnO lattices, and no potential second phase except for the doped Co ions substituting the Zn sites in ZnO lattice can account for the observed RTFM behaviour. Moreover, the synthesis process is of high reproducibility over 80% which is higher than that of commonly-used sol-gel method.展开更多
We prepare 2× (NiFe/CoZnO)/ZnO/(CoZnO/Co)×2 spin valve structures used for spin injection by sputtering and photolithography. In the junctions, the free magnetic layer 2× (NiFe/CoZnO) and the fixe...We prepare 2× (NiFe/CoZnO)/ZnO/(CoZnO/Co)×2 spin valve structures used for spin injection by sputtering and photolithography. In the junctions, the free magnetic layer 2× (NiFe/CoZnO) and the fixed magnetic layer (CoZnO/Co) × 2 are used to realize the spin valve functions in the external switch magnetic field. Since the wide gap semiconductor ZnO layer is located between the two magnetic semiconductor layers CoZnO, the electrical ,spin injection from the magnetic semiconductor CoZnO into the non-magnetic semiconductor ZnO is realized. Based on the measured magnetoresistance and the Schmidt model, the spin polarization ratio in the ZnO semiconductor is deduced to be 11.7% at 90K and 7.0% at room temperature, respectively.展开更多
Electronic and magnetic structures of zinc blende ZnO doped with V impurities are studied by first-principles calculations based on the Korringa-Kohn-Rostoker (KKR) method combined with the coherent potential approx...Electronic and magnetic structures of zinc blende ZnO doped with V impurities are studied by first-principles calculations based on the Korringa-Kohn-Rostoker (KKR) method combined with the coherent potential approximation (CPA). Calculations for the substitution of O by N or P are performed and the magnetic moment is found to be sensitive to the N or P content. Furthermore, the system exhibits a half-metallic band structure accompanied by the broadening of vanadium bands. The mechanism responsible for ferromagnetism is also discussed and the stability of the ferromagnetic state compared with that of the paramagnetic state is systematically investigated by calculating the total energy difference between them by using supercell method.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 20401001, the Key Project of Anhui Provincial Science and Technology Department under Grant No 04022075, the Project of Anhui Provincial Educational Department under Grant No 2004jq113, and the Fund of Laboratory of Solid State Microstructures, Nanjing University under Grant No M031803.
文摘Zn0.99Co0.01O nano-needles are synthesized by using pure ZnO powder as the starting material via chemical reactions in ammonia aqueous solution. The nano-needles show the room-temperature ferromagnetism (RTFM) characterized by using a superconducting quantum interference device. Non-reductive chemical synthesis steps ensure to prevent forming Co-metal nanoclusters within the doped sample. All the results of thermal gravimetric analysis, Fourier transform infrared spectroscopy, x-ray diffraction and ultraviolet spectroscopy demonstrate that Co ions have doped into ZnO lattices and occupied some Zn sites without changing the wurtzite structure of ZnO lattices, and no potential second phase except for the doped Co ions substituting the Zn sites in ZnO lattice can account for the observed RTFM behaviour. Moreover, the synthesis process is of high reproducibility over 80% which is higher than that of commonly-used sol-gel method.
基金Supported by the National Key Basic Research and Development Programme of China under Grant No 2001CB610603, the National Natural Science Foundation of China under Grant Nos 10234010 and 50402019, and the New Century Fund for 0utstanding Scholars.
文摘We prepare 2× (NiFe/CoZnO)/ZnO/(CoZnO/Co)×2 spin valve structures used for spin injection by sputtering and photolithography. In the junctions, the free magnetic layer 2× (NiFe/CoZnO) and the fixed magnetic layer (CoZnO/Co) × 2 are used to realize the spin valve functions in the external switch magnetic field. Since the wide gap semiconductor ZnO layer is located between the two magnetic semiconductor layers CoZnO, the electrical ,spin injection from the magnetic semiconductor CoZnO into the non-magnetic semiconductor ZnO is realized. Based on the measured magnetoresistance and the Schmidt model, the spin polarization ratio in the ZnO semiconductor is deduced to be 11.7% at 90K and 7.0% at room temperature, respectively.
文摘Electronic and magnetic structures of zinc blende ZnO doped with V impurities are studied by first-principles calculations based on the Korringa-Kohn-Rostoker (KKR) method combined with the coherent potential approximation (CPA). Calculations for the substitution of O by N or P are performed and the magnetic moment is found to be sensitive to the N or P content. Furthermore, the system exhibits a half-metallic band structure accompanied by the broadening of vanadium bands. The mechanism responsible for ferromagnetism is also discussed and the stability of the ferromagnetic state compared with that of the paramagnetic state is systematically investigated by calculating the total energy difference between them by using supercell method.