The western part of the Kedougou Kenieba Inlier is located in the West African Craton. It consists of paleoproterozoic NE-trending elongate belts (subprovinces) of metavolcanic and granitic rocks that alternate with m...The western part of the Kedougou Kenieba Inlier is located in the West African Craton. It consists of paleoproterozoic NE-trending elongate belts (subprovinces) of metavolcanic and granitic rocks that alternate with metasedimentary belts. Major linear fault such as the MTZ which also approximate a north-easterly trend form the eastern boundaries. The field observations and geophysics analyses were completed by a microscopic study. Based on these data we define across this region four lithostructural domains from east to west. The western domain is structurally complex. The rocks of this domain have been subjected to a complex history of polyphase deformation and metamorphism. The structural analyse allow us to distinguished three deformation events. The deformation results in the formation of D1 thrust tectonic and D2 and D3 transcurrent tectonic. The structural evolution of the Mako Belt is characterized by deformation dominated by the intrusion of large TTG batholiths (D1) followed by basins formation and transpression accommodating oblique convergence and collision (D2 and D3). The change from thrusting (D1 deformation to transcurrent motion (D2 and D3) is recorded in the marginal basin of the central domain and in Tinkoto pull apart basin. The timing of these basins indicates a diachronous evolution. Deformation styles within the basin are compatible with a dextral transpression which terminated at ca 2090 Ma. Small extensional basins formed over the rocks of the Mako Belt are filled with continental detrital sedimentary rocks that show weak foliation and active felsic volcanism. We suggest that the sinistral transpressive tectonic associated with oblique subduction may have generated the pull-apart basin and subaqueous volcanism. In part these features are now related to terrain accretion, thrusting and strike slip movement during oblique convergence. The inversion of the large scale structural evolution from thrusting to strike slip is common to modern orogenies.展开更多
The Mako area located in the region of Kedougou is characterized by very hilly terrains with hardly accessible zones. This situation makes it difficult to map these terrains and exposes the populations to the permanen...The Mako area located in the region of Kedougou is characterized by very hilly terrains with hardly accessible zones. This situation makes it difficult to map these terrains and exposes the populations to the permanent risk of a rock slide. The issue of this paper is to evaluate the instabilities susceptibility at the Mako zone located at the hilliest zone of Senegal. It is done using Geographic Information Systems (GIS). The predisposing factors that are slope, lithology, hydrography, fracturing, land use are defined by the GIS and field data then are confirmed by field observations. According to field observations, more possible scenarios are SC1 and SC4 at the dry season and rainy season respectively. The instabilities susceptibility maps are taken from weighted overlay of these factors and they show that hilly areas are the most susceptible to rockslide or landslide when fractures are present with percent of moderate to high susceptibility between 13% and 22%. These percentages increase and can reach more than 40% with an intense water flow during the rainy season. Hazard can reach up to two hundred meters of foothill according to maps.展开更多
The objective of this project is the valorization of Mako andesitic volcanic tuffs for use in social housing in the Kedougou region. To achieve these objectives, a geotechnical characterization of the tuff samples was...The objective of this project is the valorization of Mako andesitic volcanic tuffs for use in social housing in the Kedougou region. To achieve these objectives, a geotechnical characterization of the tuff samples was carried out and the geopolymerization stabilization was adopted for the manufacture of bricks. These bricks stabilized by an alkaline activation offer compressive strengths that exceed the threshold value (2.9 MPa) set by the standard (NF P14-304). The best compressive strengths (12.14 MPa) and flexural tensile strengths (5.43 MPa) are obtained in the series of bricks made with 35% of the mass of a solution of caustic soda at 12 molars concentration with a curing temperature cooking of 185°C and an average absorbance of 13.21%.展开更多
The Mako area, located in eastern Sénégal</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verda...The Mako area, located in eastern Sénégal</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> constitute</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> a segment of Paleoproterozoic (Birimian) formations of the Kédougou-Kéniéba Inliers (KKI) in the western part of the West African craton.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The basic volcanism of the Birimian formations of the KKI has long been considered to be related to a single magmatic event associated with a Mid Oceanic Ridge Basalts (MORB) setting.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The aim of this paper is to demonstrate on the basis of the architectural characteristics of the granitoids dark enclaves, the occurrence of at least two distinct phases of basic Magamtism in the Birimian of the KKI.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The methodology consists of a cartography, a petrographic and architectural characterization of the dark enclaves within the Mako granitoids, in order to constrain their spatial and temporal relationships with the granitic magma. The results obtained are compared with those of the bibliography. We have pinpointed two types of enclaves depending on their shapes and the characteristics of their edge with the enclosing rocks: angular enclaves with straight edges (ante-granitoids) and the soft enclaves with uneven edges (syn-granitoids).</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The enclaves with straight and well-defined rectilinear edges (ante-granitoids) would be linked to a basic magma which is already consolidated before being fragmented, torn and carried away as enclaves in the granitoids. These enclaves would come from enclosing outcrops of metabasalts and metagabbros which are locally cross-cut</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">by the granitoids.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The soft enclaves with uneven edges (syn-granitoids) were co-magmatic and not solid during their incorporation into the granitoids. They come from a basic magma which is contemporaneous to the granitic one.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Thus, the occurrence of two generations of dark enclaves </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> related to</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> at last, two different phases of basic magmatism in the Birimian formations of the KKI.展开更多
The purpose of this paper is to characterize rock mass stability using basic rock mass method and to compare them. Rock mass quality and strength are determined using rock mass classification and numerical methods. Th...The purpose of this paper is to characterize rock mass stability using basic rock mass method and to compare them. Rock mass quality and strength are determined using rock mass classification and numerical methods. The Factors of safety are calculated with the results of stereographic projection. Results show that quality of ultrabasite and marble are better than quality of andesite. The Slope Mass Ratings (SMR) show that rocks with the best quality are stable and andesite partially stable. The calculation of the factors of Safety by limit equilibrium assigns a stable state for ultrabasite and marble and instable for andesite. Calculation of Safety factor using stereographic parameters in one hand and finite element code in another shows more possibility of planar sliding along discontinuities than rock matrix failure. At last, quality of endogeneous rock mass is correlated with its stability state. The better rock mass is, the more stable the rock it is.展开更多
文摘The western part of the Kedougou Kenieba Inlier is located in the West African Craton. It consists of paleoproterozoic NE-trending elongate belts (subprovinces) of metavolcanic and granitic rocks that alternate with metasedimentary belts. Major linear fault such as the MTZ which also approximate a north-easterly trend form the eastern boundaries. The field observations and geophysics analyses were completed by a microscopic study. Based on these data we define across this region four lithostructural domains from east to west. The western domain is structurally complex. The rocks of this domain have been subjected to a complex history of polyphase deformation and metamorphism. The structural analyse allow us to distinguished three deformation events. The deformation results in the formation of D1 thrust tectonic and D2 and D3 transcurrent tectonic. The structural evolution of the Mako Belt is characterized by deformation dominated by the intrusion of large TTG batholiths (D1) followed by basins formation and transpression accommodating oblique convergence and collision (D2 and D3). The change from thrusting (D1 deformation to transcurrent motion (D2 and D3) is recorded in the marginal basin of the central domain and in Tinkoto pull apart basin. The timing of these basins indicates a diachronous evolution. Deformation styles within the basin are compatible with a dextral transpression which terminated at ca 2090 Ma. Small extensional basins formed over the rocks of the Mako Belt are filled with continental detrital sedimentary rocks that show weak foliation and active felsic volcanism. We suggest that the sinistral transpressive tectonic associated with oblique subduction may have generated the pull-apart basin and subaqueous volcanism. In part these features are now related to terrain accretion, thrusting and strike slip movement during oblique convergence. The inversion of the large scale structural evolution from thrusting to strike slip is common to modern orogenies.
文摘The Mako area located in the region of Kedougou is characterized by very hilly terrains with hardly accessible zones. This situation makes it difficult to map these terrains and exposes the populations to the permanent risk of a rock slide. The issue of this paper is to evaluate the instabilities susceptibility at the Mako zone located at the hilliest zone of Senegal. It is done using Geographic Information Systems (GIS). The predisposing factors that are slope, lithology, hydrography, fracturing, land use are defined by the GIS and field data then are confirmed by field observations. According to field observations, more possible scenarios are SC1 and SC4 at the dry season and rainy season respectively. The instabilities susceptibility maps are taken from weighted overlay of these factors and they show that hilly areas are the most susceptible to rockslide or landslide when fractures are present with percent of moderate to high susceptibility between 13% and 22%. These percentages increase and can reach more than 40% with an intense water flow during the rainy season. Hazard can reach up to two hundred meters of foothill according to maps.
文摘The objective of this project is the valorization of Mako andesitic volcanic tuffs for use in social housing in the Kedougou region. To achieve these objectives, a geotechnical characterization of the tuff samples was carried out and the geopolymerization stabilization was adopted for the manufacture of bricks. These bricks stabilized by an alkaline activation offer compressive strengths that exceed the threshold value (2.9 MPa) set by the standard (NF P14-304). The best compressive strengths (12.14 MPa) and flexural tensile strengths (5.43 MPa) are obtained in the series of bricks made with 35% of the mass of a solution of caustic soda at 12 molars concentration with a curing temperature cooking of 185°C and an average absorbance of 13.21%.
文摘The Mako area, located in eastern Sénégal</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> constitute</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> a segment of Paleoproterozoic (Birimian) formations of the Kédougou-Kéniéba Inliers (KKI) in the western part of the West African craton.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The basic volcanism of the Birimian formations of the KKI has long been considered to be related to a single magmatic event associated with a Mid Oceanic Ridge Basalts (MORB) setting.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The aim of this paper is to demonstrate on the basis of the architectural characteristics of the granitoids dark enclaves, the occurrence of at least two distinct phases of basic Magamtism in the Birimian of the KKI.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The methodology consists of a cartography, a petrographic and architectural characterization of the dark enclaves within the Mako granitoids, in order to constrain their spatial and temporal relationships with the granitic magma. The results obtained are compared with those of the bibliography. We have pinpointed two types of enclaves depending on their shapes and the characteristics of their edge with the enclosing rocks: angular enclaves with straight edges (ante-granitoids) and the soft enclaves with uneven edges (syn-granitoids).</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The enclaves with straight and well-defined rectilinear edges (ante-granitoids) would be linked to a basic magma which is already consolidated before being fragmented, torn and carried away as enclaves in the granitoids. These enclaves would come from enclosing outcrops of metabasalts and metagabbros which are locally cross-cut</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">by the granitoids.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The soft enclaves with uneven edges (syn-granitoids) were co-magmatic and not solid during their incorporation into the granitoids. They come from a basic magma which is contemporaneous to the granitic one.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Thus, the occurrence of two generations of dark enclaves </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> related to</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> at last, two different phases of basic magmatism in the Birimian formations of the KKI.
文摘The purpose of this paper is to characterize rock mass stability using basic rock mass method and to compare them. Rock mass quality and strength are determined using rock mass classification and numerical methods. The Factors of safety are calculated with the results of stereographic projection. Results show that quality of ultrabasite and marble are better than quality of andesite. The Slope Mass Ratings (SMR) show that rocks with the best quality are stable and andesite partially stable. The calculation of the factors of Safety by limit equilibrium assigns a stable state for ultrabasite and marble and instable for andesite. Calculation of Safety factor using stereographic parameters in one hand and finite element code in another shows more possibility of planar sliding along discontinuities than rock matrix failure. At last, quality of endogeneous rock mass is correlated with its stability state. The better rock mass is, the more stable the rock it is.