Mobile Ad-hoc Network(MANET)routing problems are thoroughly studied several approaches are identified in support of MANET.Improve the Quality of Service(QoS)performance of MANET is achieving higher performance.To redu...Mobile Ad-hoc Network(MANET)routing problems are thoroughly studied several approaches are identified in support of MANET.Improve the Quality of Service(QoS)performance of MANET is achieving higher performance.To reduce this drawback,this paper proposes a new secure routing algorithm based on real-time partial ME(Mobility,energy)approximation.The routing method RRME(Real-time Regional Mobility Energy)divides the whole network into several parts,and each node’s various characteristics like mobility and energy are randomly selected neighbors accordingly.It is done in the path discovery phase,estimated to identify and remove malicious nodes.In addition,Trusted Forwarding Factor(TFF)calculates the various nodes based on historical records and other characteristics of multiple nodes.Similarly,the calculated QoS Support Factor(QoSSF)calculating by the Data Forwarding Support(DFS),Throughput Support(TS),and Lifetime Maximization Support(LMS)to any given path.One route was found to implement the path of maximizing MANET QoS based on QoSSF value.Hence the proposed technique produces the QoS based on real-time regional ME feature approximation.The proposed simulation implementation is done by the Network Simulator version 2(NS2)tool to produce better performance than other methods.It achieved a throughput performance had 98.5%and a routing performance had 98.2%.展开更多
Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne...Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.展开更多
A mobile ad hoc network (MANET) is composed of mobile nodes, which do not have any fixed wired communication infrastructure. This paper proposes a protocol called “Delay, Jitter, Bandwidth, Cost, Power and Hop count ...A mobile ad hoc network (MANET) is composed of mobile nodes, which do not have any fixed wired communication infrastructure. This paper proposes a protocol called “Delay, Jitter, Bandwidth, Cost, Power and Hop count Constraints Routing Protocol with Mobility Prediction for Mobile Ad hoc Network using Self Healing and Optimizing Routing Technique (QPHMP-SHORT)”. It is a multiple constraints routing protocol with self healing technique for route discovery to select a best routing path among multiple paths between a source and a destination as to increase packet delivery ratio, reliability and efficiency of mobile communication. QPHMP-SHORT considers the cost incurred in channel acquisition and the incremental cost proportional to the size of the packet. It collects the residual battery power of each node for each path;selects multiple paths, which have nodes with good battery power for transmission to satisfy the power constraint. QPHMP-SHORT uses Self-Healing and Optimizing Routing Technique (SHORT) to select a shortest best path among multiple selected paths by applying hops count constraint. It also uses the mobility prediction formula to find the stability of a link between two nodes.展开更多
In location-aided routing of Mobile Ad hoc NETworks(MANET),nodes mobility and the inaccuracy of location information may result in constant flooding,which will reduce the network performance.In this paper,a Distance-B...In location-aided routing of Mobile Ad hoc NETworks(MANET),nodes mobility and the inaccuracy of location information may result in constant flooding,which will reduce the network performance.In this paper,a Distance-Based Location-Aided Routing(DBLAR) for MANET has been proposed.By tracing the location information of destination nodes and referring to distance change between nodes to adjust route discovery dynamically,the proposed routing algorithm can avoid flooding in the whole networks.Besides,Distance Update Threshold(DUT) is set up to reach the balance between real-time ability and update overhead of location information of nodes,meanwhile,the detection of relative distance vector can achieve the goal of adjusting forwarding condition.Simulation results reveal that DBLAR performs better than LAR1 in terms of packet successful delivery ratio,average end-to-end delay and routing-load,and the set of DUT and relative distance vector has a significant impact on this algorithm.展开更多
The origin of Mobile ad hoc network (MANET) was started in 1970 as packet radio network (PRNET), later on different researches were made on it in different ages. MANET works under no fixed infrastructure in which ever...The origin of Mobile ad hoc network (MANET) was started in 1970 as packet radio network (PRNET), later on different researches were made on it in different ages. MANET works under no fixed infrastructure in which every node works likes a router that stores and forwards packet to final destination. Due to its dynamic topology, MANET can be created anywhere, anytime. As there are limited resources in MANET so it faces many problems such as security, limited bandwidth, range and power constraints. Due to this, many new routing protocols are proposed. This article examines different techniques to manage congestion control, security issues, different layers attacks, routing protocols and challenges that are faced by MANET.展开更多
Mobile computing is the most powerful application for network com-munication and connectivity,given recent breakthroughs in thefield of wireless networks or Mobile Ad-hoc networks(MANETs).There are several obstacles th...Mobile computing is the most powerful application for network com-munication and connectivity,given recent breakthroughs in thefield of wireless networks or Mobile Ad-hoc networks(MANETs).There are several obstacles that effective networks confront and the networks must be able to transport data from one system to another with adequate precision.For most applications,a frame-work must ensure that the retrieved data reflects the transmitted data.Before driv-ing to other nodes,if the frame between the two nodes is deformed in the data-link layer,it must be repaired.Most link-layer protocols immediately disregard the frame and enable the high-layer protocols to transmit it down.In other words,because of asset information must be secured from threats,information is a valu-able resource.In MANETs,some applications necessitate the use of a network method for detecting and blocking these assaults.Building a secure intrusion detection system in the network,which provides security to the nodes and route paths in the network,is a major difficulty in MANET.Attacks on the network can jeopardize security issues discovered by the intrusion detection system engine,which are then blocked by the network’s intrusion prevention engine.By bringing the Secure Intrusion Detection System(S-IDS)into the network,a new technique for implementing security goals and preventing attacks will be developed.The Secure Energy Routing(SER)protocol for MANETs is introduced in this study.The protocol addresses the issue of network security by detecting and preventing attacks in the network.The data transmission in the MANET is forwarded using Elliptical Curve Cryptography(ECC)with an objective to improve the level of security.Network Simulator–2 is used to simulate the network and experiments are compared with existing methods.展开更多
A QoS routing protocol based on mobility prediction is proposed. The protocol selects the steadiest path based on mobility prediction and QoS requirements on bandwidth, delay, and so forth. The main properties of the ...A QoS routing protocol based on mobility prediction is proposed. The protocol selects the steadiest path based on mobility prediction and QoS requirements on bandwidth, delay, and so forth. The main properties of the protocol as follows. (1) Each node just broadcasts its own information, so the packet is very small and can get to the destination in a very short time. (2) When another path is built for the same QoS requirements, the original path has higher priority. (3) The update messages are reduced by using mobility prediction. (4) Data packets carry the information of link change using piggyback, which is helpful for forecasting the link status more accurately. (5) When source node gets Resource Reserve and reconnect packets at the same time, it selects reconnect packet over Resource Reserve packet. The results of simulation show that the protocol has good network performance with low control overload, and efficiently supports transmitting multimedia with QoS requirements in mobile ad hoc networks.展开更多
Because the intrinsic characteristics of mobile ad hoc networks(MANETs) cause several vulnerabilities,anonymous routing protocols attract much more attention in secure mobile ad hoc networks for the purposes of secu...Because the intrinsic characteristics of mobile ad hoc networks(MANETs) cause several vulnerabilities,anonymous routing protocols attract much more attention in secure mobile ad hoc networks for the purposes of security and privacy concerns.Until recently,lots of anonymous routing protocols have been proposed.However,most of them are single path or use one path at a time,and the multipath schemes can not thwart both the passive attacks and active attacks simultaneously.Thus an anonymous multipath routing protocol based on secret sharing is proposed.The protocol provides identity anonymity,location anonymity,data and traffic anonymity by employing cryptograph technology and secret sharing in MANET communication process.Meanwhile,a hash function is introduced to detect active attacks in the data transmission process.The protocol can effectively thwart various passive attacks and reduce the successful probability of active attacks(such as interception and physical destroy attacks).Simulation results show that the proposed scheme provides a reasonably good level of network security and performance.展开更多
Although clustering is a convenient framework to enable traffic control and service support in Mobile Ad hoc NETworks (MANETs), it is seldom adopted in practice due to the additional traffic overhead it leads to for...Although clustering is a convenient framework to enable traffic control and service support in Mobile Ad hoc NETworks (MANETs), it is seldom adopted in practice due to the additional traffic overhead it leads to for the resource limited ad hoc network. In order to address this problem, we proposed a loop-based approach to combine clustering and routing. By employing loop topologies, topology information is disseminated with a loop instead of a single node, which provides better robustness, and the nature of a loop that there are two paths between each pair of nodes within a loop composed of setup procedure, regular procedure and emergent route recovering. suggests smart route recovery strategy. Our approach is recovery procedure to achieve clustering, routing and展开更多
In recent years,with the growth in Unmanned Aerial Vehicles(UAVs),UAV-based systems have become popular in both military and civil applications.In these scenarios,the lack of reliable communication infrastructure has ...In recent years,with the growth in Unmanned Aerial Vehicles(UAVs),UAV-based systems have become popular in both military and civil applications.In these scenarios,the lack of reliable communication infrastructure has motivated UAVs to establish a network as flying nodes,also known as Flying Ad Hoc Networks(FANETs).However,in FANETs,the high mobility degree of flying and terrestrial users may be responsible for constant changes in the network topology,making end-to-end connections in FANETs challenging.Mobility estimation and prediction of UAVs can address the challenge mentioned above since it can provide better routing planning and improve overall FANET performance in terms of continuous service availability.We thus develop a Software Defined Network(SDN)-based heterogeneous architecture for reliable communication in FANETs.In this architecture,we apply an Extended Kalman Filter(EKF)for accurate mobility estimation and prediction of UAVs.In particular,we formulate the routing problem in SDN-based Heterogeneous FANETs as a graph decision problem.As the problem is NP-hard,we further propose a Directional Particle Swarming Optimization(DPSO)approach to solve it.The extensive simulation results demonstrate that the proposed DPSO routing can exhibit superior performance in improving the goodput,packet delivery ratio,and delay.展开更多
Packet dropping in a mobile ad hoc network can manifest itself as the data plane attacks as well as control plane attacks.The former deal with malicious nodes performing packet drop on the data packets following the r...Packet dropping in a mobile ad hoc network can manifest itself as the data plane attacks as well as control plane attacks.The former deal with malicious nodes performing packet drop on the data packets following the route formation and the latter deal with those malicious nodes which either drop or manipulate the control packets to degrade the network performance.The idea of the proposed approach is that during the route establishment,each of the on-path nodes is provided with pre-computed hash values which have to be used to provide a unique acknowledgement value to the upstream neighbor which acts as a proof of the forwarding activity.The analysis phase results in the detection of nodes which exhibited malicious behavior in the current communication session so as to avoid them in the future communication sessions resulting in an improved packet delivery fraction even in the presence of one or more malicious nodes in the network.The communication overhead incurred is minimum since the acknowledgement reports are sent to the destination for a transmission of N packets rather than an individual acknowledgement for each transmitted packet.In contrast to some of the existing techniques,the proposed mechanism is not dependent on the deployment of additional infrastructure like special Intrusion Detection System(IDS)nodes.The only overhead incurred is in the form of control packets exchanged for the reports request and the reports submission.展开更多
文摘Mobile Ad-hoc Network(MANET)routing problems are thoroughly studied several approaches are identified in support of MANET.Improve the Quality of Service(QoS)performance of MANET is achieving higher performance.To reduce this drawback,this paper proposes a new secure routing algorithm based on real-time partial ME(Mobility,energy)approximation.The routing method RRME(Real-time Regional Mobility Energy)divides the whole network into several parts,and each node’s various characteristics like mobility and energy are randomly selected neighbors accordingly.It is done in the path discovery phase,estimated to identify and remove malicious nodes.In addition,Trusted Forwarding Factor(TFF)calculates the various nodes based on historical records and other characteristics of multiple nodes.Similarly,the calculated QoS Support Factor(QoSSF)calculating by the Data Forwarding Support(DFS),Throughput Support(TS),and Lifetime Maximization Support(LMS)to any given path.One route was found to implement the path of maximizing MANET QoS based on QoSSF value.Hence the proposed technique produces the QoS based on real-time regional ME feature approximation.The proposed simulation implementation is done by the Network Simulator version 2(NS2)tool to produce better performance than other methods.It achieved a throughput performance had 98.5%and a routing performance had 98.2%.
基金the Deanship of Scientific Research at Majmaah University for supporting this work under Project No.R-2024-1008.
文摘Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.
文摘A mobile ad hoc network (MANET) is composed of mobile nodes, which do not have any fixed wired communication infrastructure. This paper proposes a protocol called “Delay, Jitter, Bandwidth, Cost, Power and Hop count Constraints Routing Protocol with Mobility Prediction for Mobile Ad hoc Network using Self Healing and Optimizing Routing Technique (QPHMP-SHORT)”. It is a multiple constraints routing protocol with self healing technique for route discovery to select a best routing path among multiple paths between a source and a destination as to increase packet delivery ratio, reliability and efficiency of mobile communication. QPHMP-SHORT considers the cost incurred in channel acquisition and the incremental cost proportional to the size of the packet. It collects the residual battery power of each node for each path;selects multiple paths, which have nodes with good battery power for transmission to satisfy the power constraint. QPHMP-SHORT uses Self-Healing and Optimizing Routing Technique (SHORT) to select a shortest best path among multiple selected paths by applying hops count constraint. It also uses the mobility prediction formula to find the stability of a link between two nodes.
基金Supported by National 863 High Technology Research and Development Program Foundation of China (No.2006AA-01Z208)Six Talented Eminence Foundation of Jiangsu Province (06-E-043), China+1 种基金Natural Science Foundation of Jiangsu Province, China (No.BK2007236)Scientific Innovation Project for Postgraduates of Universities in Jiangsu Province (CX08B-082Z)
文摘In location-aided routing of Mobile Ad hoc NETworks(MANET),nodes mobility and the inaccuracy of location information may result in constant flooding,which will reduce the network performance.In this paper,a Distance-Based Location-Aided Routing(DBLAR) for MANET has been proposed.By tracing the location information of destination nodes and referring to distance change between nodes to adjust route discovery dynamically,the proposed routing algorithm can avoid flooding in the whole networks.Besides,Distance Update Threshold(DUT) is set up to reach the balance between real-time ability and update overhead of location information of nodes,meanwhile,the detection of relative distance vector can achieve the goal of adjusting forwarding condition.Simulation results reveal that DBLAR performs better than LAR1 in terms of packet successful delivery ratio,average end-to-end delay and routing-load,and the set of DUT and relative distance vector has a significant impact on this algorithm.
文摘The origin of Mobile ad hoc network (MANET) was started in 1970 as packet radio network (PRNET), later on different researches were made on it in different ages. MANET works under no fixed infrastructure in which every node works likes a router that stores and forwards packet to final destination. Due to its dynamic topology, MANET can be created anywhere, anytime. As there are limited resources in MANET so it faces many problems such as security, limited bandwidth, range and power constraints. Due to this, many new routing protocols are proposed. This article examines different techniques to manage congestion control, security issues, different layers attacks, routing protocols and challenges that are faced by MANET.
文摘Mobile computing is the most powerful application for network com-munication and connectivity,given recent breakthroughs in thefield of wireless networks or Mobile Ad-hoc networks(MANETs).There are several obstacles that effective networks confront and the networks must be able to transport data from one system to another with adequate precision.For most applications,a frame-work must ensure that the retrieved data reflects the transmitted data.Before driv-ing to other nodes,if the frame between the two nodes is deformed in the data-link layer,it must be repaired.Most link-layer protocols immediately disregard the frame and enable the high-layer protocols to transmit it down.In other words,because of asset information must be secured from threats,information is a valu-able resource.In MANETs,some applications necessitate the use of a network method for detecting and blocking these assaults.Building a secure intrusion detection system in the network,which provides security to the nodes and route paths in the network,is a major difficulty in MANET.Attacks on the network can jeopardize security issues discovered by the intrusion detection system engine,which are then blocked by the network’s intrusion prevention engine.By bringing the Secure Intrusion Detection System(S-IDS)into the network,a new technique for implementing security goals and preventing attacks will be developed.The Secure Energy Routing(SER)protocol for MANETs is introduced in this study.The protocol addresses the issue of network security by detecting and preventing attacks in the network.The data transmission in the MANET is forwarded using Elliptical Curve Cryptography(ECC)with an objective to improve the level of security.Network Simulator–2 is used to simulate the network and experiments are compared with existing methods.
基金TheNationalHighTechnologyDevelopment"863"Program(No.2 0 0 1AA112051),TheNationalScienceFundforOverseasDistinguishedYoungScholars (No .6992 82 0 1)
文摘A QoS routing protocol based on mobility prediction is proposed. The protocol selects the steadiest path based on mobility prediction and QoS requirements on bandwidth, delay, and so forth. The main properties of the protocol as follows. (1) Each node just broadcasts its own information, so the packet is very small and can get to the destination in a very short time. (2) When another path is built for the same QoS requirements, the original path has higher priority. (3) The update messages are reduced by using mobility prediction. (4) Data packets carry the information of link change using piggyback, which is helpful for forecasting the link status more accurately. (5) When source node gets Resource Reserve and reconnect packets at the same time, it selects reconnect packet over Resource Reserve packet. The results of simulation show that the protocol has good network performance with low control overload, and efficiently supports transmitting multimedia with QoS requirements in mobile ad hoc networks.
基金supported by the National Basic Research Program of China(973 Program)(2011CB302903)the Key Program of Natural Science for Universities of Jiangsu Province(10KJA510035)+2 种基金the Science and Technology Innovation Group Foundation of Jiangsu Province ("Qing and Lan" Project)the Postgraduate Innovation Project Foundation of Jiangsu Province(CX10B 194ZCX09B 152Z)
文摘Because the intrinsic characteristics of mobile ad hoc networks(MANETs) cause several vulnerabilities,anonymous routing protocols attract much more attention in secure mobile ad hoc networks for the purposes of security and privacy concerns.Until recently,lots of anonymous routing protocols have been proposed.However,most of them are single path or use one path at a time,and the multipath schemes can not thwart both the passive attacks and active attacks simultaneously.Thus an anonymous multipath routing protocol based on secret sharing is proposed.The protocol provides identity anonymity,location anonymity,data and traffic anonymity by employing cryptograph technology and secret sharing in MANET communication process.Meanwhile,a hash function is introduced to detect active attacks in the data transmission process.The protocol can effectively thwart various passive attacks and reduce the successful probability of active attacks(such as interception and physical destroy attacks).Simulation results show that the proposed scheme provides a reasonably good level of network security and performance.
基金Supported in part by 863-2002AA103011-5, Shanghai Municipal R&D Foundation (No.035107008), and LG-KAIST-FUDAN International Cooperation Project.
文摘Although clustering is a convenient framework to enable traffic control and service support in Mobile Ad hoc NETworks (MANETs), it is seldom adopted in practice due to the additional traffic overhead it leads to for the resource limited ad hoc network. In order to address this problem, we proposed a loop-based approach to combine clustering and routing. By employing loop topologies, topology information is disseminated with a loop instead of a single node, which provides better robustness, and the nature of a loop that there are two paths between each pair of nodes within a loop composed of setup procedure, regular procedure and emergent route recovering. suggests smart route recovery strategy. Our approach is recovery procedure to achieve clustering, routing and
文摘In recent years,with the growth in Unmanned Aerial Vehicles(UAVs),UAV-based systems have become popular in both military and civil applications.In these scenarios,the lack of reliable communication infrastructure has motivated UAVs to establish a network as flying nodes,also known as Flying Ad Hoc Networks(FANETs).However,in FANETs,the high mobility degree of flying and terrestrial users may be responsible for constant changes in the network topology,making end-to-end connections in FANETs challenging.Mobility estimation and prediction of UAVs can address the challenge mentioned above since it can provide better routing planning and improve overall FANET performance in terms of continuous service availability.We thus develop a Software Defined Network(SDN)-based heterogeneous architecture for reliable communication in FANETs.In this architecture,we apply an Extended Kalman Filter(EKF)for accurate mobility estimation and prediction of UAVs.In particular,we formulate the routing problem in SDN-based Heterogeneous FANETs as a graph decision problem.As the problem is NP-hard,we further propose a Directional Particle Swarming Optimization(DPSO)approach to solve it.The extensive simulation results demonstrate that the proposed DPSO routing can exhibit superior performance in improving the goodput,packet delivery ratio,and delay.
基金The author would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under Project Number 1439-59.
文摘Packet dropping in a mobile ad hoc network can manifest itself as the data plane attacks as well as control plane attacks.The former deal with malicious nodes performing packet drop on the data packets following the route formation and the latter deal with those malicious nodes which either drop or manipulate the control packets to degrade the network performance.The idea of the proposed approach is that during the route establishment,each of the on-path nodes is provided with pre-computed hash values which have to be used to provide a unique acknowledgement value to the upstream neighbor which acts as a proof of the forwarding activity.The analysis phase results in the detection of nodes which exhibited malicious behavior in the current communication session so as to avoid them in the future communication sessions resulting in an improved packet delivery fraction even in the presence of one or more malicious nodes in the network.The communication overhead incurred is minimum since the acknowledgement reports are sent to the destination for a transmission of N packets rather than an individual acknowledgement for each transmitted packet.In contrast to some of the existing techniques,the proposed mechanism is not dependent on the deployment of additional infrastructure like special Intrusion Detection System(IDS)nodes.The only overhead incurred is in the form of control packets exchanged for the reports request and the reports submission.