Objective To explore the effects of resveratrol-induced apoptosis and autophagy in T-cell acute lymphoblastic leukemia (T-ALL) cells and potential molecular mechanisms. Methods The anti-proliferation effect of resve...Objective To explore the effects of resveratrol-induced apoptosis and autophagy in T-cell acute lymphoblastic leukemia (T-ALL) cells and potential molecular mechanisms. Methods The anti-proliferation effect of resveratrol-induced, apoptosis and autophagy on T-ALL cells were detected by using MTI- test, immunofluorescence, electronic microscope, and flow cytometry, respectively. Western blotting was performed for detecting changes of apoptosis-associated proteins, cell cycle regulatory proteins and state of activation of Akt, mTOR, p70S6K, 4E-BP1, and p38-MAPK. Results Resveratrol inhibited the proliferation and dose and time-dependent manner. It also induced cyclin-dependent kinase (CDK) inhibitors p21 and induced apoptosis and autophagy in T-ALL cells in a cell cycle arrest at G0/G1 phase via up regulating p27 and down regulating cyclin A and cyclin D1. Western blotting revealed that resveratrol significantly decreased the expression of antiapoptotic proteins (Mcl-1 and Bcl-2) and increased the expression of proapoptotic proteins (Bax, Bim, and Bad), and induced cleaved-caspase-3 in a time-dependent manner. Significant increase in ratio of LC3-11/LC3-1 and Beclin 1 was also detected. Furthermore, resveratrol induced significant dephosphorylation of Akt, mTOR, p70S6K, and 4E-BP1, but enhanced specific phosphorylation of p38-MAPK which could be blocked by SB203580. When autophagy was suppressed by 3-MA, apoptosis in T-ALL cells induced by resveratrol was enhanced. Conclusion Our findings have suggested that resveratrol induces cell cycle arrest, apoptosis, and autophagy in T-ALL cells through inhibiting Akt/mTOR/p7OS6K/4E-BP1 and activating p38-MAPK signaling pathways. Autophagy might play a role as a self-defense mechanism in T-ALL cells treated by resveratrol. Therefore, the reasonable inhibition of autophagy in T-ALL cells may serve as a promising strategy for resveratrol induced apoptosis and can be used as adjuvant chemotherapy for T-ALL.展开更多
Tuberous sclerosis complex (TSC) is an autosomal dominant tumor syndrome which afflicts multiple organs and for which there is no cure, such that TSC patients may develop severe mental retardation and succumb to ren...Tuberous sclerosis complex (TSC) is an autosomal dominant tumor syndrome which afflicts multiple organs and for which there is no cure, such that TSC patients may develop severe mental retardation and succumb to renal or respiratory failure. TSC derives from inacti- vating mutations of either the TSC1 or TSC2 tumor suppressor gene, and the resulting inactivation of the TSC1/TSC2 protein complex causes hyperactivation of the mammalian target of rapamyein (mTOR), leading to uncontrolled cell growth and proliferation. Recent clinical trials of targeted suppression of mTOR have yielded only modest success in TSC patients. It was proposed that abrogation of a newly identified mTOR-mediated negative feedback regulation on extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway and on the well-documented RTK-PI3K-AKT signaling cascade could limit the efficacy of mTOR inhibitors in the treatment of TSC patients. Therefore, we speculate that dual inhibition of mTOR and ERK/MAPK pathways may overcome the disadvantage of single agent therapies and boost the efficacy of mTOR targeted therapies for TSC patients. Investigation of this hypothesis in a TSC cell model revealed that mTOR suppression with an mTOR inhibitor, rapamycin (sirolimus), led to up-regulation of ERK/MAPK signaling in mouse Tsc2 knockout cells and that this augmented signaling was attenuated by concurrent administration of a MEK1/2 inhibitor, PD98059. When compared with monotherapy, combinatorial application of rapamycin and PD98059 had greater inhibitory effects on Tsc2 deficient cell proliferation, suggesting that combined suppression of mTOR and ERK/MAPK signaling pathways may have advantages over single mTOR inhibition in the treatment of TSC patients.展开更多
基金supported by grants from the Department of Science and Technology of Sichuan Province,China (No.2008JY0029-1 and No.07FG002-024)research funds from the Program for Changjiang Scholars and Innovative-Research Team in University (No.IRT0935)
文摘Objective To explore the effects of resveratrol-induced apoptosis and autophagy in T-cell acute lymphoblastic leukemia (T-ALL) cells and potential molecular mechanisms. Methods The anti-proliferation effect of resveratrol-induced, apoptosis and autophagy on T-ALL cells were detected by using MTI- test, immunofluorescence, electronic microscope, and flow cytometry, respectively. Western blotting was performed for detecting changes of apoptosis-associated proteins, cell cycle regulatory proteins and state of activation of Akt, mTOR, p70S6K, 4E-BP1, and p38-MAPK. Results Resveratrol inhibited the proliferation and dose and time-dependent manner. It also induced cyclin-dependent kinase (CDK) inhibitors p21 and induced apoptosis and autophagy in T-ALL cells in a cell cycle arrest at G0/G1 phase via up regulating p27 and down regulating cyclin A and cyclin D1. Western blotting revealed that resveratrol significantly decreased the expression of antiapoptotic proteins (Mcl-1 and Bcl-2) and increased the expression of proapoptotic proteins (Bax, Bim, and Bad), and induced cleaved-caspase-3 in a time-dependent manner. Significant increase in ratio of LC3-11/LC3-1 and Beclin 1 was also detected. Furthermore, resveratrol induced significant dephosphorylation of Akt, mTOR, p70S6K, and 4E-BP1, but enhanced specific phosphorylation of p38-MAPK which could be blocked by SB203580. When autophagy was suppressed by 3-MA, apoptosis in T-ALL cells induced by resveratrol was enhanced. Conclusion Our findings have suggested that resveratrol induces cell cycle arrest, apoptosis, and autophagy in T-ALL cells through inhibiting Akt/mTOR/p7OS6K/4E-BP1 and activating p38-MAPK signaling pathways. Autophagy might play a role as a self-defense mechanism in T-ALL cells treated by resveratrol. Therefore, the reasonable inhibition of autophagy in T-ALL cells may serve as a promising strategy for resveratrol induced apoptosis and can be used as adjuvant chemotherapy for T-ALL.
基金supported in part by the National Natural Science Foundation of China (No. 30788004)
文摘Tuberous sclerosis complex (TSC) is an autosomal dominant tumor syndrome which afflicts multiple organs and for which there is no cure, such that TSC patients may develop severe mental retardation and succumb to renal or respiratory failure. TSC derives from inacti- vating mutations of either the TSC1 or TSC2 tumor suppressor gene, and the resulting inactivation of the TSC1/TSC2 protein complex causes hyperactivation of the mammalian target of rapamyein (mTOR), leading to uncontrolled cell growth and proliferation. Recent clinical trials of targeted suppression of mTOR have yielded only modest success in TSC patients. It was proposed that abrogation of a newly identified mTOR-mediated negative feedback regulation on extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway and on the well-documented RTK-PI3K-AKT signaling cascade could limit the efficacy of mTOR inhibitors in the treatment of TSC patients. Therefore, we speculate that dual inhibition of mTOR and ERK/MAPK pathways may overcome the disadvantage of single agent therapies and boost the efficacy of mTOR targeted therapies for TSC patients. Investigation of this hypothesis in a TSC cell model revealed that mTOR suppression with an mTOR inhibitor, rapamycin (sirolimus), led to up-regulation of ERK/MAPK signaling in mouse Tsc2 knockout cells and that this augmented signaling was attenuated by concurrent administration of a MEK1/2 inhibitor, PD98059. When compared with monotherapy, combinatorial application of rapamycin and PD98059 had greater inhibitory effects on Tsc2 deficient cell proliferation, suggesting that combined suppression of mTOR and ERK/MAPK signaling pathways may have advantages over single mTOR inhibition in the treatment of TSC patients.