Cyanidin-3-glucoside(C3G)is the most common anthocyanin in dark grains and berries and is a food functional factor to improve visual health.However,the mechanisms of C3G on blue light-induced retinal pigment epithelia...Cyanidin-3-glucoside(C3G)is the most common anthocyanin in dark grains and berries and is a food functional factor to improve visual health.However,the mechanisms of C3G on blue light-induced retinal pigment epithelial(RPE)cell photooxidative damage needs further exploration.We investigated the effects of C3G on blue light-irradiated A2E-containing RPE cells and explored whether sphingolipid,mitogen-activated protein kinase(MAPK),and mitochondria-mediated pathways are involved in this mechanism.Blue light irradiation led to mitochondria and lysosome damage in RPE cells,whereas C3G preserved mitochondrial morphology and function and maintained the lysosomal integrity.C3G suppressed the phosphorylation of JNK and p38 MAPK and mitochondria-mediated pathways to inhibit RPE cell apoptosis.Lipidomics data showed that C3G protected RPE cells against blue light-induced lipid peroxidation and apoptosis by maintaining sphingolipids balance.C3G significantly inhibited ceramide(Cer d18:0/15:0,Cer d18:0/16:0 and Cer d18:0/18:0)accumulation and elevated galactosylceramide(GalCer d18:1/15:0 and GalCer d18:1/16:0)levels in the irradiated A2E-containing RPE cells.Furthermore,C3G attenuated cell membrane damage by increasing phosphatidylcholine and phosphatidylserine levels.C3G inhibited apoptosis and preserved the structure of mitochondria and lysosome by regulating sphingolipid signaling and suppression of MAPK activation in RPE cells.Thus,dietary supplementation of C3G prevents retinal photooxidative damage.展开更多
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related t...Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.展开更多
We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effec...We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effects on the IGF-1/PI3K/Akt/mTOR pathway in benign prostatic hyperplasia(BPH).Metabolites in ADLE were analyzed using UHPLC-qTOF-MS and HPLC.IQ was orally administered(1 or 10 mg/kg)to a testosterone propionate-induced BPH rat model,and its effects on the prostate weight were evaluated.The effect of IQ on androgen receptor(AR)signaling was analyzed in LNCaP cells.Whether IGF-1 and IQ affect the IGF-1/PI3K/Akt/mTOR pathway in BPH-1 cells was also examined.The metabolites in ADLE were identified and quantified,which confirmed that ADLE contained abundant IQ(20.88 mg/g).IQ significantly reduced the prostate size in a concentration-dependent manner in a BPH rat model,and significantly decreased the expression of AR signaling factors in the rat prostate tissue and LNCaP cells in a concentration-dependent manner.IQ also inhibited the PI3K/AKT/mTOR pathway activated by IGF-1 treatment in BPH-1 cells.In BPH-1 cells,IQ led to G0/G1 arrest and suppressed the expression of proliferation factors while inducing apoptosis.Thus,IQ shows potential for use as a pharmaceutical and nutraceutical for BPH.展开更多
BACKGROUND Aplastic anemia(AA)presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells,with the current the-rapeutic options being notably limited.AIM T...BACKGROUND Aplastic anemia(AA)presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells,with the current the-rapeutic options being notably limited.AIM To assess the therapeutic potential of ginsenoside Rg1 on AA,specifically its protective effects,while elucidating the mechanism at play.METHODS We employed a model of myelosuppression induced by cyclophosphamide(CTX)in C57 mice,followed by administration of ginsenoside Rg1 over 13 d.The invest-igation included examining the bone marrow,thymus and spleen for pathological changes via hematoxylin-eosin staining.Moreover,orbital blood of mice was collected for blood routine examinations.Flow cytometry was employed to identify the impact of ginsenoside Rg1 on cell apoptosis and cycle in the bone marrow of AA mice.Additionally,the study further evaluated cytokine levels with enzyme-linked immunosorbent assay and analyzed the expression of key proteins in the MAPK signaling pathway via western blot.RESULTS Administration of CTX led to significant damage to the bone marrow’s structural integrity and a reduction in hematopoietic cells,establishing a model of AA.Ginsenoside Rg1 successfully reversed hematopoietic dysfunction in AA mice.In comparison to the AA group,ginsenoside Rg1 provided relief by reducing the induction of cell apoptosis and inflammation factors caused by CTX.Furthermore,it helped alleviate the blockade in the cell cycle.Treatment with ginsenoside Rg1 significantly alleviated myelosuppression in mice by inhibiting the MAPK signaling pathway.CONCLUSION This study suggested that ginsenoside Rg1 addresses AA by alleviating myelosuppression,primarily through modulating the MAPK signaling pathway,which paves the way for a novel therapeutic strategy in treating AA,highlighting the potential of ginsenoside Rg1 as a beneficial intervention.展开更多
Background:The aim of this study is to investigate the mechanism of action underlying the therapeutic effects of the national patent Chinese medicine compound“Qiangxinhuoli prescription(QXHLF)”on chronic heart failu...Background:The aim of this study is to investigate the mechanism of action underlying the therapeutic effects of the national patent Chinese medicine compound“Qiangxinhuoli prescription(QXHLF)”on chronic heart failure(CHF).Methods:In vitro,the H_(9)C_(2) cell model was induced by ANGII,and cell proliferation and related protein expression were detected by Cell Counting Kit-8 and Western blot.In vivo,A rat model of CHF was prepared by ligation of the left anterior descending coronary artery.The effects of QXHLF on cardiac function in CHF rats were evaluated by cardiac index,hemodynamic changes,enzyme-linked immunosorbent assay,hematoxylin-eosin staining,immunohistochemistry,Western blot and RT-PCR.The expression of pro-apoptotic factors and anti-apoptotic factors,as well as TGFβ1,p-p38,TAK 1 mRNA,and protein,were detected.Results:In vitro,QXHLF has a significant inhibitory effect on the proliferation of H_(9)C_(2) cells.QXHLF can reduce the expression levels of TAK 1,TGFβ1,p-p38,Caspase3 and BAX proteins in H_(9)C_(2) cells,and increase the expression level of BCL_(2) protein.In vivo,QXHLF has the potential to increase left ventricular systolic pressure,m aximum rate of change in left ventricular pressure while decreasing left ventricular end diastolic pressure,and inhibiting the serum levels of brain natriuretic peptide.Moreover,QXHLF exhibits significant improvements in the pathological alterations of myocardial cells and fibers in CHF rats,leading to enhanced myocardial tissue morphology and notable advantages in combating myocardial fibrosis.QXHLF can reduce the levels of BAX and Caspase3 and up-regulate the expression of BCL_(2),thereby inhibiting cardiomyocyte apoptosis.Furthermore,QXHLF demonstrates inhibitory effects on the mRNA and protein expression levels of TGFβ_(1),TAK_(1),and p-p38 in the heart tissue of the CHF rat model.Conclusion:These findings indicate that QXHLF has a therapeutic effect on CHF by inhibiting the p38-MAPK signaling pathway,reducing myocardial fibrosis,preventing apoptosis,inhibiting cell proliferation,and restoring myocardial injury.展开更多
The polycystic ovary syndrome (PCOS) model was established in fats and correlation between the expression of macrophage migration inhibitory factor (MIF) and cytokinesis with the MAPK signalling pathway in the rat ova...The polycystic ovary syndrome (PCOS) model was established in fats and correlation between the expression of macrophage migration inhibitory factor (MIF) and cytokinesis with the MAPK signalling pathway in the rat ovary was measured. The PCOS model in rats was established by dehydroepiandrosterone (DHEA).Thirty sexually immature female Sprague-Dawley rats were randomly and equally assigned to three groups:control group,PCOS group,and PCOS with high-fat diet (HFD) group.Serum hormones were assayed by radioimmunoassay (RIA).The ovaries'were immunohistochemically stained with MIF,and the expression of MIF,p-JNK and p-p38 was detected by Western blotting in ovaries.The serum testosterone level,LH concentration,LH/FSH ratio,fasting insulin level and HOMA IR index in the PCOS group (6.077±0.478,13.809±1.701,1.820±0.404,10.83±1.123 and 1.8692±0.1096)and PCOS with HFD group (6.075±0.439,14.075±1.927,1.779±0.277,10.20±1.377 and 1.7736±0.6851)were significantly higher than those in the control group (4.949±0.337, 2.458±0.509,1.239±0.038,9.53±0.548 and 1.5329±0.7363),but there was no significant difference between the PCOS group and PCOS with HFD group.The expression levels of MIF,p-JNK,and p-p38 in the PCOS group (0.4048±0.013,0.6233±0.093 and 0.7987±0.061)and PCOS withHFD group (0.1929±0.012,0.3346±0.103 and 0.3468±0.031)were obviously higher than those in control group (0.2492±0.013, 0.3271±0.093 and 0.3393±0.061),but no Significant difference was observed between PCOS group and PCOS with HFD group.It was suggested that MIF may participate in the pathogenesis of PCOS through the MAPK signalling pathway in PCOS rats induced by DHEA.展开更多
Glabridin is the main ingredient of hydrophobic fraction in licorice extract and has been shown to have anti-melanogenesis activity in skins.However,the underlying mechanism(s)remain not completely understood.The aim ...Glabridin is the main ingredient of hydrophobic fraction in licorice extract and has been shown to have anti-melanogenesis activity in skins.However,the underlying mechanism(s)remain not completely understood.The aim of this study is thus to elucidate the possible mechanisms related to the melanogenesis suppression by glabridin in cultured B16 murine melanoma cells and in UVA radiation induced hyperpigmentation model of BALB/c mice as well.Molecular docking simulations revealed that between catalytic core residues and the compound.The treatment by glabridin significantly downregulated both transcriptional and/or protein expression of melanogenesis-related factors including melanocyte stimulating hormone receptor(MC1R),microphthalmia-associated transcription factor(MITF),tyrosinase(TYR),TYR-related protein-1(TRP-1)and TRP-2 in B16 cells.Both PKA/MITF and MAPK/MITF signaling pathways were found to be involved in the suppression of melanogenesis by glabridin in B16 cells.Also in vivo glabridin therapy significantly reduced hyperpigmentation,epidermal thickening,roughness and inflammation induced by frequent UVA exposure in mice skins,thus beneficial for skin healthcare.These data further look insights into the molecular mechanisms of melanogenesis suppression by glabridin,rationalizing the application of the natural compound for skin healthcare.展开更多
Objective To explore the effects of resveratrol-induced apoptosis and autophagy in T-cell acute lymphoblastic leukemia (T-ALL) cells and potential molecular mechanisms. Methods The anti-proliferation effect of resve...Objective To explore the effects of resveratrol-induced apoptosis and autophagy in T-cell acute lymphoblastic leukemia (T-ALL) cells and potential molecular mechanisms. Methods The anti-proliferation effect of resveratrol-induced, apoptosis and autophagy on T-ALL cells were detected by using MTI- test, immunofluorescence, electronic microscope, and flow cytometry, respectively. Western blotting was performed for detecting changes of apoptosis-associated proteins, cell cycle regulatory proteins and state of activation of Akt, mTOR, p70S6K, 4E-BP1, and p38-MAPK. Results Resveratrol inhibited the proliferation and dose and time-dependent manner. It also induced cyclin-dependent kinase (CDK) inhibitors p21 and induced apoptosis and autophagy in T-ALL cells in a cell cycle arrest at G0/G1 phase via up regulating p27 and down regulating cyclin A and cyclin D1. Western blotting revealed that resveratrol significantly decreased the expression of antiapoptotic proteins (Mcl-1 and Bcl-2) and increased the expression of proapoptotic proteins (Bax, Bim, and Bad), and induced cleaved-caspase-3 in a time-dependent manner. Significant increase in ratio of LC3-11/LC3-1 and Beclin 1 was also detected. Furthermore, resveratrol induced significant dephosphorylation of Akt, mTOR, p70S6K, and 4E-BP1, but enhanced specific phosphorylation of p38-MAPK which could be blocked by SB203580. When autophagy was suppressed by 3-MA, apoptosis in T-ALL cells induced by resveratrol was enhanced. Conclusion Our findings have suggested that resveratrol induces cell cycle arrest, apoptosis, and autophagy in T-ALL cells through inhibiting Akt/mTOR/p7OS6K/4E-BP1 and activating p38-MAPK signaling pathways. Autophagy might play a role as a self-defense mechanism in T-ALL cells treated by resveratrol. Therefore, the reasonable inhibition of autophagy in T-ALL cells may serve as a promising strategy for resveratrol induced apoptosis and can be used as adjuvant chemotherapy for T-ALL.展开更多
AIM: To determine whether the PI3K/AKT/mTOR pathway is activated in proliferative vitreoretinopathy (PVR) in homo-sapiens. METHODS: The retina of controls and patients with PVR were collected and their levels of PI3K,...AIM: To determine whether the PI3K/AKT/mTOR pathway is activated in proliferative vitreoretinopathy (PVR) in homo-sapiens. METHODS: The retina of controls and patients with PVR were collected and their levels of PI3K, phospho-AKT, phospho-mTOR, phospho-p70S6k and phospho-4EBP-1 were determined by Western blot. The cultured human retinal pigment epithelial cell line D407 was treated with a specific mTOR inhibitor, rapamycin (RAPA) or a PI3K inhibitor, LY294002, of various concentrations and durations. Cell morphology was observed by phase contrast microscopy and the proliferation and apoptosis of treated cells were determined by MTT assay and flow cytometry. RESULTS: Levels of PI3K, phospho-AKT, phospho-mTOR, phospho-P70S6K and phospho-4EBP1 was increased in the retina in PVR (P <0.05). In D407 cells, both RAPA and LY294002 significantly inhibited cell proliferation and cell cycle progression, and promoted apoptosis (P <0.05); morphologically, the cells became smaller. Both RAPA and LY294002 reduced levels of phospho-AKT, phospho-mTOR, phospho-p70S6k and phospho-4EBP1 expression (P <0.05). RAPA, but not LY294002, had no significant effect on PI3K expression. CONCLUSION: PI3K/AKT/mTOR signaling pathway is highly activated in the retinal pigment epithelial cells of PVR. The inhibitors of PI3K/AKT/mTOR signaling pathway, RAPA and LY294002, could inhibited the PI3K/AKT/mTOR signaling pathway by reducing the levels of phosphorylation of mTOR pathway components.展开更多
Two immunomodulatory polysaccharides(Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cell...Two immunomodulatory polysaccharides(Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cells. Both the level of released nitric oxide(NO) and expression of inducible nitric oxide synthase(iNOS) m RNA were significantly enhanced in the RAW264.7 macrophages cells treated by Vp2a-Ⅱ and Vp3. Vp2a-Ⅱ(100–800 μg/m L) and Vp3(400 μg/mL) could significantly increase the phagocytic activity of RAW264.7 cells and the secretion and m RNA expression of TNF-α and IL-6 in a concentrationdependent manner through affecting mitogen-activated protein kinase(MAPK) activity and nuclear factor κB(NF-κB) nuclear translocation. Vp2a-Ⅱ might activate the MAPK signaling pathways and induce the nuclear translocation of NF-κB p65, whilst Vp3 likely activated the NF-κB and MAPK signaling pathways without influencing the p38 MAPK route.展开更多
Both tea polyphenols and selenium(Se)have been suggested to exert the health benefits via the regulatory capacities of chronic inflammation,which make Se-enriched oolong tea a promising beverage as an anti-inflammator...Both tea polyphenols and selenium(Se)have been suggested to exert the health benefits via the regulatory capacities of chronic inflammation,which make Se-enriched oolong tea a promising beverage as an anti-inflammatory diet.The aim of this study is to investigate the anti-inflammatory effects of Se-enriched oolong tea extract(Se-TE)and underlying mechanism in lipopolysaccharide(LPS)-induced RAW264.7 cells.Se-TE treatments(50 and 150μg/m L)significantly suppressed the over-production of nitric oxide(NO)and prostaglandin E2(PGE2)in LPS-stimulated macrophages via downregulating the expression of nitric oxide synthase(i NOS)and cyclooxygenase-2(COX-2).Moreover,Se-TEs also effectively inhibited the productions of inflammatory cytokines,such as tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),and interleukin-1β(IL-1β).Furthermore,Se-TE could block mitogen-activated protein kinase(MAPK)and nuclear factor-kappa B(NF-κB)signaling pathways through the inhibition of the phosphorylation of key proteins(IκB-α,p65,p38,ERK,and JNK)and the translocation of the p65 subunit into the nucleus.Collectively,our results indicated that Se-TE may have the potential to be used as a novel food ingredient for the development of various anti-inflammatory foods and the treatment and prevention of chronic inflammation-related diseases.展开更多
基金funded by the National Natural Science Foundation of China(31901698)Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(2019QNRC001)。
文摘Cyanidin-3-glucoside(C3G)is the most common anthocyanin in dark grains and berries and is a food functional factor to improve visual health.However,the mechanisms of C3G on blue light-induced retinal pigment epithelial(RPE)cell photooxidative damage needs further exploration.We investigated the effects of C3G on blue light-irradiated A2E-containing RPE cells and explored whether sphingolipid,mitogen-activated protein kinase(MAPK),and mitochondria-mediated pathways are involved in this mechanism.Blue light irradiation led to mitochondria and lysosome damage in RPE cells,whereas C3G preserved mitochondrial morphology and function and maintained the lysosomal integrity.C3G suppressed the phosphorylation of JNK and p38 MAPK and mitochondria-mediated pathways to inhibit RPE cell apoptosis.Lipidomics data showed that C3G protected RPE cells against blue light-induced lipid peroxidation and apoptosis by maintaining sphingolipids balance.C3G significantly inhibited ceramide(Cer d18:0/15:0,Cer d18:0/16:0 and Cer d18:0/18:0)accumulation and elevated galactosylceramide(GalCer d18:1/15:0 and GalCer d18:1/16:0)levels in the irradiated A2E-containing RPE cells.Furthermore,C3G attenuated cell membrane damage by increasing phosphatidylcholine and phosphatidylserine levels.C3G inhibited apoptosis and preserved the structure of mitochondria and lysosome by regulating sphingolipid signaling and suppression of MAPK activation in RPE cells.Thus,dietary supplementation of C3G prevents retinal photooxidative damage.
基金supported by the National Natural Science Foundation of China,No.81971097(to JY)。
文摘Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education,Science and Technology (NRF2020R1A2C1014798 to E-K Kim)。
文摘We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effects on the IGF-1/PI3K/Akt/mTOR pathway in benign prostatic hyperplasia(BPH).Metabolites in ADLE were analyzed using UHPLC-qTOF-MS and HPLC.IQ was orally administered(1 or 10 mg/kg)to a testosterone propionate-induced BPH rat model,and its effects on the prostate weight were evaluated.The effect of IQ on androgen receptor(AR)signaling was analyzed in LNCaP cells.Whether IGF-1 and IQ affect the IGF-1/PI3K/Akt/mTOR pathway in BPH-1 cells was also examined.The metabolites in ADLE were identified and quantified,which confirmed that ADLE contained abundant IQ(20.88 mg/g).IQ significantly reduced the prostate size in a concentration-dependent manner in a BPH rat model,and significantly decreased the expression of AR signaling factors in the rat prostate tissue and LNCaP cells in a concentration-dependent manner.IQ also inhibited the PI3K/AKT/mTOR pathway activated by IGF-1 treatment in BPH-1 cells.In BPH-1 cells,IQ led to G0/G1 arrest and suppressed the expression of proliferation factors while inducing apoptosis.Thus,IQ shows potential for use as a pharmaceutical and nutraceutical for BPH.
基金Supported by Hangzhou Municipal Bureau of Science and Technology,No.2021WJCY366.
文摘BACKGROUND Aplastic anemia(AA)presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells,with the current the-rapeutic options being notably limited.AIM To assess the therapeutic potential of ginsenoside Rg1 on AA,specifically its protective effects,while elucidating the mechanism at play.METHODS We employed a model of myelosuppression induced by cyclophosphamide(CTX)in C57 mice,followed by administration of ginsenoside Rg1 over 13 d.The invest-igation included examining the bone marrow,thymus and spleen for pathological changes via hematoxylin-eosin staining.Moreover,orbital blood of mice was collected for blood routine examinations.Flow cytometry was employed to identify the impact of ginsenoside Rg1 on cell apoptosis and cycle in the bone marrow of AA mice.Additionally,the study further evaluated cytokine levels with enzyme-linked immunosorbent assay and analyzed the expression of key proteins in the MAPK signaling pathway via western blot.RESULTS Administration of CTX led to significant damage to the bone marrow’s structural integrity and a reduction in hematopoietic cells,establishing a model of AA.Ginsenoside Rg1 successfully reversed hematopoietic dysfunction in AA mice.In comparison to the AA group,ginsenoside Rg1 provided relief by reducing the induction of cell apoptosis and inflammation factors caused by CTX.Furthermore,it helped alleviate the blockade in the cell cycle.Treatment with ginsenoside Rg1 significantly alleviated myelosuppression in mice by inhibiting the MAPK signaling pathway.CONCLUSION This study suggested that ginsenoside Rg1 addresses AA by alleviating myelosuppression,primarily through modulating the MAPK signaling pathway,which paves the way for a novel therapeutic strategy in treating AA,highlighting the potential of ginsenoside Rg1 as a beneficial intervention.
基金the Science and Technology Research Project of the Education Department of Jilin Province(No.JJKH20220862KJ)the Jilin Province higher education teaching reform research topic(No.20224BRFI7U003M)National Natural Science Foundation of China(No.82074324).
文摘Background:The aim of this study is to investigate the mechanism of action underlying the therapeutic effects of the national patent Chinese medicine compound“Qiangxinhuoli prescription(QXHLF)”on chronic heart failure(CHF).Methods:In vitro,the H_(9)C_(2) cell model was induced by ANGII,and cell proliferation and related protein expression were detected by Cell Counting Kit-8 and Western blot.In vivo,A rat model of CHF was prepared by ligation of the left anterior descending coronary artery.The effects of QXHLF on cardiac function in CHF rats were evaluated by cardiac index,hemodynamic changes,enzyme-linked immunosorbent assay,hematoxylin-eosin staining,immunohistochemistry,Western blot and RT-PCR.The expression of pro-apoptotic factors and anti-apoptotic factors,as well as TGFβ1,p-p38,TAK 1 mRNA,and protein,were detected.Results:In vitro,QXHLF has a significant inhibitory effect on the proliferation of H_(9)C_(2) cells.QXHLF can reduce the expression levels of TAK 1,TGFβ1,p-p38,Caspase3 and BAX proteins in H_(9)C_(2) cells,and increase the expression level of BCL_(2) protein.In vivo,QXHLF has the potential to increase left ventricular systolic pressure,m aximum rate of change in left ventricular pressure while decreasing left ventricular end diastolic pressure,and inhibiting the serum levels of brain natriuretic peptide.Moreover,QXHLF exhibits significant improvements in the pathological alterations of myocardial cells and fibers in CHF rats,leading to enhanced myocardial tissue morphology and notable advantages in combating myocardial fibrosis.QXHLF can reduce the levels of BAX and Caspase3 and up-regulate the expression of BCL_(2),thereby inhibiting cardiomyocyte apoptosis.Furthermore,QXHLF demonstrates inhibitory effects on the mRNA and protein expression levels of TGFβ_(1),TAK_(1),and p-p38 in the heart tissue of the CHF rat model.Conclusion:These findings indicate that QXHLF has a therapeutic effect on CHF by inhibiting the p38-MAPK signaling pathway,reducing myocardial fibrosis,preventing apoptosis,inhibiting cell proliferation,and restoring myocardial injury.
基金This project was in part supported by the National Natural Science Foundation of China (No.30973196).
文摘The polycystic ovary syndrome (PCOS) model was established in fats and correlation between the expression of macrophage migration inhibitory factor (MIF) and cytokinesis with the MAPK signalling pathway in the rat ovary was measured. The PCOS model in rats was established by dehydroepiandrosterone (DHEA).Thirty sexually immature female Sprague-Dawley rats were randomly and equally assigned to three groups:control group,PCOS group,and PCOS with high-fat diet (HFD) group.Serum hormones were assayed by radioimmunoassay (RIA).The ovaries'were immunohistochemically stained with MIF,and the expression of MIF,p-JNK and p-p38 was detected by Western blotting in ovaries.The serum testosterone level,LH concentration,LH/FSH ratio,fasting insulin level and HOMA IR index in the PCOS group (6.077±0.478,13.809±1.701,1.820±0.404,10.83±1.123 and 1.8692±0.1096)and PCOS with HFD group (6.075±0.439,14.075±1.927,1.779±0.277,10.20±1.377 and 1.7736±0.6851)were significantly higher than those in the control group (4.949±0.337, 2.458±0.509,1.239±0.038,9.53±0.548 and 1.5329±0.7363),but there was no significant difference between the PCOS group and PCOS with HFD group.The expression levels of MIF,p-JNK,and p-p38 in the PCOS group (0.4048±0.013,0.6233±0.093 and 0.7987±0.061)and PCOS withHFD group (0.1929±0.012,0.3346±0.103 and 0.3468±0.031)were obviously higher than those in control group (0.2492±0.013, 0.3271±0.093 and 0.3393±0.061),but no Significant difference was observed between PCOS group and PCOS with HFD group.It was suggested that MIF may participate in the pathogenesis of PCOS through the MAPK signalling pathway in PCOS rats induced by DHEA.
基金supported by the Inner Mongolia Autonomous Region Science and Technology Revitalization Foundation (2021CG0029)the National Natural Science Foundation of China (22178070)
文摘Glabridin is the main ingredient of hydrophobic fraction in licorice extract and has been shown to have anti-melanogenesis activity in skins.However,the underlying mechanism(s)remain not completely understood.The aim of this study is thus to elucidate the possible mechanisms related to the melanogenesis suppression by glabridin in cultured B16 murine melanoma cells and in UVA radiation induced hyperpigmentation model of BALB/c mice as well.Molecular docking simulations revealed that between catalytic core residues and the compound.The treatment by glabridin significantly downregulated both transcriptional and/or protein expression of melanogenesis-related factors including melanocyte stimulating hormone receptor(MC1R),microphthalmia-associated transcription factor(MITF),tyrosinase(TYR),TYR-related protein-1(TRP-1)and TRP-2 in B16 cells.Both PKA/MITF and MAPK/MITF signaling pathways were found to be involved in the suppression of melanogenesis by glabridin in B16 cells.Also in vivo glabridin therapy significantly reduced hyperpigmentation,epidermal thickening,roughness and inflammation induced by frequent UVA exposure in mice skins,thus beneficial for skin healthcare.These data further look insights into the molecular mechanisms of melanogenesis suppression by glabridin,rationalizing the application of the natural compound for skin healthcare.
基金supported by grants from the Department of Science and Technology of Sichuan Province,China (No.2008JY0029-1 and No.07FG002-024)research funds from the Program for Changjiang Scholars and Innovative-Research Team in University (No.IRT0935)
文摘Objective To explore the effects of resveratrol-induced apoptosis and autophagy in T-cell acute lymphoblastic leukemia (T-ALL) cells and potential molecular mechanisms. Methods The anti-proliferation effect of resveratrol-induced, apoptosis and autophagy on T-ALL cells were detected by using MTI- test, immunofluorescence, electronic microscope, and flow cytometry, respectively. Western blotting was performed for detecting changes of apoptosis-associated proteins, cell cycle regulatory proteins and state of activation of Akt, mTOR, p70S6K, 4E-BP1, and p38-MAPK. Results Resveratrol inhibited the proliferation and dose and time-dependent manner. It also induced cyclin-dependent kinase (CDK) inhibitors p21 and induced apoptosis and autophagy in T-ALL cells in a cell cycle arrest at G0/G1 phase via up regulating p27 and down regulating cyclin A and cyclin D1. Western blotting revealed that resveratrol significantly decreased the expression of antiapoptotic proteins (Mcl-1 and Bcl-2) and increased the expression of proapoptotic proteins (Bax, Bim, and Bad), and induced cleaved-caspase-3 in a time-dependent manner. Significant increase in ratio of LC3-11/LC3-1 and Beclin 1 was also detected. Furthermore, resveratrol induced significant dephosphorylation of Akt, mTOR, p70S6K, and 4E-BP1, but enhanced specific phosphorylation of p38-MAPK which could be blocked by SB203580. When autophagy was suppressed by 3-MA, apoptosis in T-ALL cells induced by resveratrol was enhanced. Conclusion Our findings have suggested that resveratrol induces cell cycle arrest, apoptosis, and autophagy in T-ALL cells through inhibiting Akt/mTOR/p7OS6K/4E-BP1 and activating p38-MAPK signaling pathways. Autophagy might play a role as a self-defense mechanism in T-ALL cells treated by resveratrol. Therefore, the reasonable inhibition of autophagy in T-ALL cells may serve as a promising strategy for resveratrol induced apoptosis and can be used as adjuvant chemotherapy for T-ALL.
基金Scientific Research Project of Education Department of Liaoning Province, China (No.L2010676)Project of Science and Technology Commission of Shenyang City,China(No.F10-149-9-58)Doctoral Foundation of Ministry of Education of China (No.20102104120027)
文摘AIM: To determine whether the PI3K/AKT/mTOR pathway is activated in proliferative vitreoretinopathy (PVR) in homo-sapiens. METHODS: The retina of controls and patients with PVR were collected and their levels of PI3K, phospho-AKT, phospho-mTOR, phospho-p70S6k and phospho-4EBP-1 were determined by Western blot. The cultured human retinal pigment epithelial cell line D407 was treated with a specific mTOR inhibitor, rapamycin (RAPA) or a PI3K inhibitor, LY294002, of various concentrations and durations. Cell morphology was observed by phase contrast microscopy and the proliferation and apoptosis of treated cells were determined by MTT assay and flow cytometry. RESULTS: Levels of PI3K, phospho-AKT, phospho-mTOR, phospho-P70S6K and phospho-4EBP1 was increased in the retina in PVR (P <0.05). In D407 cells, both RAPA and LY294002 significantly inhibited cell proliferation and cell cycle progression, and promoted apoptosis (P <0.05); morphologically, the cells became smaller. Both RAPA and LY294002 reduced levels of phospho-AKT, phospho-mTOR, phospho-p70S6k and phospho-4EBP1 expression (P <0.05). RAPA, but not LY294002, had no significant effect on PI3K expression. CONCLUSION: PI3K/AKT/mTOR signaling pathway is highly activated in the retinal pigment epithelial cells of PVR. The inhibitors of PI3K/AKT/mTOR signaling pathway, RAPA and LY294002, could inhibited the PI3K/AKT/mTOR signaling pathway by reducing the levels of phosphorylation of mTOR pathway components.
基金supported by Research on Precision Nutrition and Health Food,Department of Science and Technology of Henan Province(CXJD2021006)。
文摘Two immunomodulatory polysaccharides(Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cells. Both the level of released nitric oxide(NO) and expression of inducible nitric oxide synthase(iNOS) m RNA were significantly enhanced in the RAW264.7 macrophages cells treated by Vp2a-Ⅱ and Vp3. Vp2a-Ⅱ(100–800 μg/m L) and Vp3(400 μg/mL) could significantly increase the phagocytic activity of RAW264.7 cells and the secretion and m RNA expression of TNF-α and IL-6 in a concentrationdependent manner through affecting mitogen-activated protein kinase(MAPK) activity and nuclear factor κB(NF-κB) nuclear translocation. Vp2a-Ⅱ might activate the MAPK signaling pathways and induce the nuclear translocation of NF-κB p65, whilst Vp3 likely activated the NF-κB and MAPK signaling pathways without influencing the p38 MAPK route.
基金funded by Fujian Special Research Projects for Public Scientific Research Institutions(grant number 2020R1032001)。
文摘Both tea polyphenols and selenium(Se)have been suggested to exert the health benefits via the regulatory capacities of chronic inflammation,which make Se-enriched oolong tea a promising beverage as an anti-inflammatory diet.The aim of this study is to investigate the anti-inflammatory effects of Se-enriched oolong tea extract(Se-TE)and underlying mechanism in lipopolysaccharide(LPS)-induced RAW264.7 cells.Se-TE treatments(50 and 150μg/m L)significantly suppressed the over-production of nitric oxide(NO)and prostaglandin E2(PGE2)in LPS-stimulated macrophages via downregulating the expression of nitric oxide synthase(i NOS)and cyclooxygenase-2(COX-2).Moreover,Se-TEs also effectively inhibited the productions of inflammatory cytokines,such as tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),and interleukin-1β(IL-1β).Furthermore,Se-TE could block mitogen-activated protein kinase(MAPK)and nuclear factor-kappa B(NF-κB)signaling pathways through the inhibition of the phosphorylation of key proteins(IκB-α,p65,p38,ERK,and JNK)and the translocation of the p65 subunit into the nucleus.Collectively,our results indicated that Se-TE may have the potential to be used as a novel food ingredient for the development of various anti-inflammatory foods and the treatment and prevention of chronic inflammation-related diseases.