期刊文献+
共找到659篇文章
< 1 2 33 >
每页显示 20 50 100
Feature Extraction by Multi-Scale Principal Component Analysis and Classification in Spectral Domain 被引量:2
1
作者 Shengkun Xie Anna T. Lawnizak +1 位作者 Pietro Lio Sridhar Krishnan 《Engineering(科研)》 2013年第10期268-271,共4页
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (... Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals. 展开更多
关键词 MULTI-SCALE Principal Component Analysis Discrete wavelet TRANSFORM feature extraction Signal classification Empirical classification
下载PDF
A novel feature extraction method for ship-radiated noise 被引量:4
2
作者 Hong Yang Lu-lu Li +1 位作者 Guo-hui Li Qian-ru Guan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期604-617,共14页
To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive s... To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive selective noise(CEEMDASN) and refined composite multiscale fluctuation-based dispersion entropy(RCMFDE) is proposed.CEEMDASN is proposed in this paper which takes into account the high frequency intermittent components when decomposing the signal.In addition,RCMFDE is also proposed in this paper which refines the preprocessing process of the original signal based on composite multi-scale theory.Firstly,the original signal is decomposed into several intrinsic mode functions(IMFs)by CEEMDASN.Energy distribution ratio(EDR) and average energy distribution ratio(AEDR) of all IMF components are calculated.Then,the IMF with the minimum difference between EDR and AEDR(MEDR)is selected as characteristic IMF.The RCMFDE of characteristic IMF is estimated as the feature vectors of ship-radiated noise.Finally,these feature vectors are sent to self-organizing map(SOM) for classifying and identifying.The proposed method is applied to the feature extraction of ship-radiated noise.The result shows its effectiveness and universality. 展开更多
关键词 Complete ensemble empirical mode decomposition with adaptive noise Ship-radiated noise feature extraction classification and recognition
下载PDF
New supervised learning classifiers for structural damage diagnosis using time series features from a new feature extraction technique
3
作者 Masoud Haghani Chegeni Mohammad Kazem Sharbatdar +1 位作者 Reza Mahjoub Mahdi Raftari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第1期169-191,共23页
The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduce... The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduced to extract damage-sensitive features from auto-regressive models.This approach sets out to improve current feature extraction techniques in the context of time series modeling.The coefficients and residuals of the AR model obtained from the proposed approach are selected as the main features and are applied to the proposed supervised learning classifiers that are categorized as coefficient-based and residual-based classifiers.These classifiers compute the relative errors in the extracted features between the undamaged and damaged states.Eventually,the abilities of the proposed methods to localize and quantify single and multiple damage scenarios are verified by applying experimental data for a laboratory frame and a four-story steel structure.Comparative analyses are performed to validate the superiority of the proposed methods over some existing techniques.Results show that the proposed classifiers,with the aid of extracted features from the proposed feature extraction approach,are able to locate and quantify damage;however,the residual-based classifiers yield better results than the coefficient-based classifiers.Moreover,these methods are superior to some classical techniques. 展开更多
关键词 structural damage diagnosis statistical pattern recognition feature extraction time series analysis supervised learning classification
下载PDF
Application of wavelet transform in feature extraction and pattern recognition of wideband echoes 被引量:8
4
作者 ZHAO Jianping HUANG Jianguo ZHANG Huafeng(College of Marine Engineering, Northwestern Polytechnical University Xi’an 710072) 《Chinese Journal of Acoustics》 1998年第3期213-220,共8页
A novel approach to extract edge features from wideband echo is proposed. The set of extracted features not only represents the echo waveform in a concise way, but also is sufficient and well suited for classification... A novel approach to extract edge features from wideband echo is proposed. The set of extracted features not only represents the echo waveform in a concise way, but also is sufficient and well suited for classification of non-stationary echo data from objects with different property.The feature extraction is derived from the Discrete Dyadic Wavlet Transform (DDWT) of the echo through the undecimated algorithm. The motivation we use the DDWT is that it is time-shift-invariant which is beneficial for localization of edge, and the wavelet coefficients at larger scale represent the main shape feature of echo, i.e. edge, and the noise and modulated high-frequency components are reduced with scale increased. Some experimental results using real data which contain 144 samples from 4 classes of lake bottoms with different sediments are provided. The results show that our approach is a prospective way to represent wideband echo for reliable recognition of nonstationary echo with great variability. 展开更多
关键词 MALLAT IEEE SP Application of wavelet transform in feature extraction and pattern recognition of wideband echoes
原文传递
Wavelet packet based feature extraction and recognition of license plate characters 被引量:3
5
作者 HUANGWei LUXiaobo LINGXiaojing 《Chinese Science Bulletin》 SCIE EI CAS 2005年第2期97-100,共4页
To study the characteristics of license plate characters recognition,this paper proposes a method for fea- ture extraction of license plate characters based on two-dimensional wavelet packet.We decompose license plate... To study the characteristics of license plate characters recognition,this paper proposes a method for fea- ture extraction of license plate characters based on two-dimensional wavelet packet.We decompose license plate character images with two dimensional-wavelet packet and search for the optimal wavelet packet basis.This paper pre- sents a criterion of searching for the optimal wavelet packet basis,and a practical algorithm.The obtained optimal wavelet packet basis is used as the feature of license plate character,and a BP neural network is used to classify the character.The test- ing results show that the proposed method achieved higher recognition rate than the traditional methods. 展开更多
关键词 牌照 自动识别 图像识别 小波数据包 特征抽出 特征识别
原文传递
FACE RECOGNITION BASED ON WAVELET-CURVELET-FRACTAL TECHNIQUE
6
作者 Zhang Zhong Zhuang Peidong Liu Yong Ding Qun Ye Hong'an 《Journal of Electronics(China)》 2010年第2期206-211,共6页
In this paper,a novel face recognition method,named as wavelet-curvelet-fractal technique,is proposed. Based on the similarities embedded in the images,we propose to utilize the wave-let-curvelet-fractal technique to ... In this paper,a novel face recognition method,named as wavelet-curvelet-fractal technique,is proposed. Based on the similarities embedded in the images,we propose to utilize the wave-let-curvelet-fractal technique to extract facial features. Thus we have the wavelet’s details in diagonal,vertical,and horizontal directions,and the eight curvelet details at different angles. Then we adopt the Euclidean minimum distance classifier to recognize different faces. Extensive comparison tests on dif-ferent data sets are carried out,and higher recognition rate is obtained by the proposed technique. 展开更多
关键词 Face recognition wavelet decomposition Curvelet transform FRACTAL Facial feature extraction
下载PDF
Hybrid Features for an Arabic Word Recognition System
7
作者 Mehmmood A. Abd Sarab Al Rubeaai George Paschos 《Computer Technology and Application》 2012年第10期685-691,共7页
This research proposes and implements an Arabic Sub-Words Recognition System (ASWR). The system focuses on employing a combination of statistical and structural features to provide complete pattern's description an... This research proposes and implements an Arabic Sub-Words Recognition System (ASWR). The system focuses on employing a combination of statistical and structural features to provide complete pattern's description and enhances the recognition rate. Support Vector Machines (SVMs) is utilized as a promising pattern recognition tool. In addition to that, the problems of dots and holes are solved in a completely different way from the ones previously employed. The proposed system proceeds in several phases as follows: (1) image acquisition, (2) binarisation, (3) morphological processing, (4) feature extraction, which includes statistical features, i.e., moment invariants, and structural features, i.e., dot number, dot position, and number of holes, features, and (5) classification, using multi-class SVMs and applying a one-against-all technique. The proposed system has been tested using different sets of words and subwords and has achieved a nearly 98.90% recogiaition rate. Comparative results with NNs are also presented. 展开更多
关键词 Arabic word recognition support vector machines classification feature extraction neural networks morphological.
下载PDF
Target Image Classification through Encryption Algorithm Based on the Biological Features
8
作者 Zhiwu Chen Qing E. Wu Weidong Yang 《International Journal of Intelligence Science》 2015年第1期6-12,共7页
In order to effectively make biological image classification and identification, this paper studies the biological owned characteristics, gives an encryption algorithm, and presents a biological classification algorit... In order to effectively make biological image classification and identification, this paper studies the biological owned characteristics, gives an encryption algorithm, and presents a biological classification algorithm based on the encryption process. Through studying the composition characteristics of palm, this paper uses the biological classification algorithm to carry out the classification or recognition of palm, improves the accuracy and efficiency of the existing biological classification and recognition approaches, and compares it with existing main approaches of palm classification by experiments. Experimental results show that this classification approach has the better classification effect, the faster computing speed and the higher classification rate which is improved averagely by 1.46% than those of the main classification approaches. 展开更多
关键词 ENCRYPTION PALM recognition classification feature extraction
下载PDF
Face Recognition Based on Wavelet Packet Coefficients and Radial Basis Function Neural Networks
9
作者 Thangairulappan Kathirvalavakumar Jeyasingh Jebakumari Beulah Vasanthi 《Journal of Intelligent Learning Systems and Applications》 2013年第2期115-122,共8页
An efficient face recognition system with face image representation using averaged wavelet packet coefficients, compact and meaningful feature vectors dimensional reduction and recognition using radial basis function ... An efficient face recognition system with face image representation using averaged wavelet packet coefficients, compact and meaningful feature vectors dimensional reduction and recognition using radial basis function (RBF) neural network is presented. The face images are decomposed by 2-level two-dimensional (2-D) wavelet packet transformation. The wavelet packet coefficients obtained from the wavelet packet transformation are averaged using two different proposed methods. In the first method, wavelet packet coefficients of individual samples of a class are averaged then decomposed. The wavelet packet coefficients of all the samples of a class are averaged in the second method. The averaged wavelet packet coefficients are recognized by a RBF network. The proposed work tested on three face databases such as Olivetti-Oracle Research Lab (ORL), Japanese Female Facial Expression (JAFFE) and Essexface database. The proposed methods result in dimensionality reduction, low computational complexity and provide better recognition rates. The computational complexity is low as the dimensionality of the input pattern is reduced. 展开更多
关键词 feature extraction FACE recognition wavelet PACKETS RADIAL BASIS Function Neural Network
下载PDF
Severity Recognition of Aloe vera Diseases Using AI in Tensor Flow Domain 被引量:5
10
作者 Nazeer Muhammad Rubab +3 位作者 Nargis Bibi Oh-Young Song Muhammad Attique Khan Sajid Ali Khan 《Computers, Materials & Continua》 SCIE EI 2021年第2期2199-2216,共18页
Agriculture plays an important role in the economy of all countries.However,plant diseases may badly affect the quality of food,production,and ultimately the economy.For plant disease detection and management,agricult... Agriculture plays an important role in the economy of all countries.However,plant diseases may badly affect the quality of food,production,and ultimately the economy.For plant disease detection and management,agriculturalists spend a huge amount of money.However,the manual detection method of plant diseases is complicated and time-consuming.Consequently,automated systems for plant disease detection using machine learning(ML)approaches are proposed.However,most of the existing ML techniques of plants diseases recognition are based on handcrafted features and they rarely deal with huge amount of input data.To address the issue,this article proposes a fully automated method for plant disease detection and recognition using deep neural networks.In the proposed method,AlexNet and VGG19 CNNs are considered as pre-trained architectures.It is capable to obtain the feature extraction of the given data with fine-tuning details.After convolutional neural network feature extraction,it selects the best subset of features through the correlation coefficient and feeds them to the number of classifiers including K-Nearest Neighbor,Support Vector Machine,Probabilistic Neural Network,Fuzzy logic,and Artificial Neural Network.The validation of the proposed method is carried out on a self-collected dataset generated through the augmentation step.The achieved average accuracy of our method is more than 96%and outperforms the recent techniques. 展开更多
关键词 Plants diseases wavelet transform fast algorithm deep learning feature extraction classification
下载PDF
A Survey on Artificial Intelligence in Posture Recognition 被引量:4
11
作者 Xiaoyan Jiang Zuojin Hu +1 位作者 Shuihua Wang Yudong Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期35-82,共48页
Over the years,the continuous development of new technology has promoted research in the field of posture recognition and also made the application field of posture recognition have been greatly expanded.The purpose o... Over the years,the continuous development of new technology has promoted research in the field of posture recognition and also made the application field of posture recognition have been greatly expanded.The purpose of this paper is to introduce the latest methods of posture recognition and review the various techniques and algorithms of posture recognition in recent years,such as scale-invariant feature transform,histogram of oriented gradients,support vectormachine(SVM),Gaussian mixturemodel,dynamic time warping,hiddenMarkovmodel(HMM),lightweight network,convolutional neural network(CNN).We also investigate improved methods of CNN,such as stacked hourglass networks,multi-stage pose estimation networks,convolutional posemachines,and high-resolution nets.The general process and datasets of posture recognition are analyzed and summarized,and several improved CNNmethods and threemain recognition techniques are compared.In addition,the applications of advanced neural networks in posture recognition,such as transfer learning,ensemble learning,graph neural networks,and explainable deep neural networks,are introduced.It was found that CNN has achieved great success in posture recognition and is favored by researchers.Still,a more in-depth research is needed in feature extraction,information fusion,and other aspects.Among classification methods,HMM and SVM are the most widely used,and lightweight network gradually attracts the attention of researchers.In addition,due to the lack of 3Dbenchmark data sets,data generation is a critical research direction. 展开更多
关键词 Posture recognition artificial intelligence machine learning deep neural network deep learning transfer learning feature extraction classification
下载PDF
Privacy‐preserving remote sensing images recognition based on limited visual cryptography 被引量:3
12
作者 Denghui Zhang Muhammad Shafiq +2 位作者 Liguo Wang Gautam Srivastava Shoulin Yin 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1166-1177,共12页
With the arrival of new data acquisition platforms derived from the Internet of Things(IoT),this paper goes beyond the understanding of traditional remote sensing technologies.Deep fusion of remote sensing and compute... With the arrival of new data acquisition platforms derived from the Internet of Things(IoT),this paper goes beyond the understanding of traditional remote sensing technologies.Deep fusion of remote sensing and computer vision has hit the industrial world and makes it possible to apply Artificial intelligence to solve problems such as automatic extraction of information and image interpretation.However,due to the complex architecture of IoT and the lack of a unified security protection mechanism,devices in remote sensing are vulnerable to privacy leaks when sharing data.It is necessary to design a security scheme suitable for computation‐limited devices in IoT,since traditional encryption methods are based on computational complexity.Visual Cryptography(VC)is a threshold scheme for images that can be decoded directly by the human visual system when superimposing encrypted images.The stacking‐to‐see feature and simple Boolean decryption operation make VC an ideal solution for privacy‐preserving recognition for large‐scale remote sensing images in IoT.In this study,the secure and efficient transmission of high‐resolution remote sensing images by meaningful VC is achieved.By diffusing the error between the encryption block and the original block to adjacent blocks,the degradation of quality in recovery images is mitigated.By fine‐tuning the pre‐trained model from large‐scale datasets,we improve the recognition performance of small encryption datasets for remote sensing images.The experimental results show that the proposed lightweight privacy‐preserving recognition framework maintains high recognition performance while enhancing security. 展开更多
关键词 activity recognition feature extraction image classification KNN privacy protection remote monitoring remote sensing
下载PDF
Affective State Recognition Using Thermal-Based Imaging: A Survey 被引量:1
13
作者 Mustafa M.M.Al Qudah Ahmad S.A.Mohamed Syaheerah L.Lutfi 《Computer Systems Science & Engineering》 SCIE EI 2021年第4期47-62,共16页
The thermal-based imaging technique has recently attracted the attention of researchers who are interested in the recognition of human affects dueto its ability to measure the facial transient temperature, which is co... The thermal-based imaging technique has recently attracted the attention of researchers who are interested in the recognition of human affects dueto its ability to measure the facial transient temperature, which is correlated withhuman affects and robustness against illumination changes. Therefore, studieshave increasingly used the thermal imaging as a potential and supplemental solution to overcome the challenges of visual (RGB) imaging, such as the variation oflight conditions and revealing original human affect. Moreover, the thermal-basedimaging has shown promising results in the detection of psychophysiological signals, such as pulse rate and respiration rate in a contactless and noninvasive way.This paper presents a brief review on human affects and focuses on the advantages and challenges of the thermal imaging technique. In addition, this paper discusses the stages of thermal-based human affective state recognition, such asdataset type, preprocessing stage, region of interest (ROI), feature descriptors,and classification approaches with a brief performance analysis based on a number of works in the literature. This analysis could help beginners in the thermalimaging and affective recognition domain to explore numerous approaches usedby researchers to construct an affective state system based on thermal imaging. 展开更多
关键词 Thermal-based imaging affective state recognition spontaneous emotion feature extraction and classification
下载PDF
Classification of epilepsy using computational intelligence techniques 被引量:3
14
作者 Khurram I. Qazi H.K. Lam +2 位作者 Bo Xiao Gaoxiang Ouyang Xunhe Yin 《CAAI Transactions on Intelligence Technology》 2016年第2期137-149,共13页
This paper deals with a real-life application of epilepsy classification, where three phases of absence seizure, namely pre-seizure, seizure and seizure-free, are classified using real clinical data. Artificial neural... This paper deals with a real-life application of epilepsy classification, where three phases of absence seizure, namely pre-seizure, seizure and seizure-free, are classified using real clinical data. Artificial neural network (ANN) and support vector machines (SVMs) combined with su- pervised learning algorithms, and k-means clustering (k-MC) combined with unsupervised techniques are employed to classify the three seizure phases. Different techniques to combine binary SVMs, namely One Vs One (OvO), One Vs All (OVA) and Binary Decision Tree (BDT), are employed for multiclass classification. Comparisons are performed with two traditional classification methods, namely, k-Nearest Neighbour (k- NN) and Naive Bayes classifier. It is concluded that SVM-based classifiers outperform the traditional ones in terms of recognition accuracy and robustness property when the original clinical data is distorted with noise. Furthermore, SVM-based classifier with OvO provides the highest recognition accuracy, whereas ANN-based classifier overtakes by demonstrating maximum accuracy in the presence of noise. 展开更多
关键词 Absence seizure Discrete wavelet transform Epilepsy classification feature extraction k-means clustering k-nearest neighbours Naive Bayes NEURALNETWORKS Support vector machines
下载PDF
基于语料库的朝鲜语命名实体结构特征研究
15
作者 黄政豪 金光洙 《外语学刊》 北大核心 2025年第1期9-18,共10页
本文统计Klue⁃ner和Kochet⁃ner两个命名实体语料库中的新闻、评论和文化遗产文本数据包含的不同类别朝鲜语命名实体。根据统计结果分析朝鲜语命名实体的音节长度特征分布和格词尾结合率。分析结果表明,音节长度和格词尾的使用在命名实... 本文统计Klue⁃ner和Kochet⁃ner两个命名实体语料库中的新闻、评论和文化遗产文本数据包含的不同类别朝鲜语命名实体。根据统计结果分析朝鲜语命名实体的音节长度特征分布和格词尾结合率。分析结果表明,音节长度和格词尾的使用在命名实体分类中具有一定的规律可循。本文的研究成果可用于命名实体分类工作,同时也可以为朝鲜语命名实体语料库构建提供分布结构建议。 展开更多
关键词 朝鲜语 格词尾 命名实体识别 特征提取 名词分类
下载PDF
Recognition of newspaper printed in Gurumukhi script
16
作者 Rupinder Pal Kaur Manish Kumar Jindal Munish Kumar 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2495-2503,共9页
In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power c... In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power curve fitting based features are considered for extracting the statistical properties of the characters printed in the newspaper.Different combinations of these features are also applied to improve the recognition accuracy.For recognition,four classification techniques,namely,k-NN,linear-SVM,decision tree,and random forest are used.A database for the experiments is collected from three major Gurumukhi script newspapers which are Ajit,Jagbani and Punjabi Tribune.Using 5-fold cross validation and random forest classifier,a recognition accuracy of 96.19%with a combination of zoning features,diagonal features and parabola curve fitting based features has been reported.A recognition accuracy of 95.21%with a partitioning strategy of data set(70%data as training data and remaining 30%data as testing data)has been achieved. 展开更多
关键词 newspaper recognition feature extraction classification Gurumukhi script random forest
下载PDF
Video expression recognition based on frame-level attention mechanism
17
作者 陈瑞 TONG Ying +1 位作者 ZHANG Yiye XU Bo 《High Technology Letters》 EI CAS 2023年第2期130-139,共10页
Facial expression recognition(FER) in video has attracted the increasing interest and many approaches have been made.The crucial problem of classifying a given video sequence into several basic emotions is how to fuse... Facial expression recognition(FER) in video has attracted the increasing interest and many approaches have been made.The crucial problem of classifying a given video sequence into several basic emotions is how to fuse facial features of individual frames.In this paper, a frame-level attention module is integrated into an improved VGG-based frame work and a lightweight facial expression recognition method is proposed.The proposed network takes a sub video cut from an experimental video sequence as its input and generates a fixed-dimension representation.The VGG-based network with an enhanced branch embeds face images into feature vectors.The frame-level attention module learns weights which are used to adaptively aggregate the feature vectors to form a single discriminative video representation.Finally, a regression module outputs the classification results.The experimental results on CK+and AFEW databases show that the recognition rates of the proposed method can achieve the state-of-the-art performance. 展开更多
关键词 facial expression recognition(FER) video sequence attention mechanism feature extraction enhanced feature VGG network image classification neural network
下载PDF
Iris Recognition Based on Multilevel Thresholding Technique and Modified Fuzzy c-Means Algorithm
18
作者 Slim Ben Chaabane Rafika Harrabi +1 位作者 Anas Bushnag Hassene Seddik 《Journal on Artificial Intelligence》 2022年第4期201-214,共14页
Biometrics represents the technology for measuring the characteristics of the human body.Biometric authentication currently allows for secure,easy,and fast access by recognizing a person based on facial,voice,and fing... Biometrics represents the technology for measuring the characteristics of the human body.Biometric authentication currently allows for secure,easy,and fast access by recognizing a person based on facial,voice,and fingerprint traits.Iris authentication is one of the essential biometric methods for identifying a person.This authentication type has become popular in research and practical applications.Unlike the face and hands,the iris is an internal organ,protected and therefore less likely to be damaged.However,the number of helpful information collected from the iris is much greater than the other biometric human organs.This work proposes a new iris identification model based on a multilevel thresholding technique and modified Fuzzy cmeans algorithm.The multilevel thresholding technique extracts the iris from its surroundings,such as specular reflections,eyelashes,pupils,and sclera.On the other hand,the modified Fuzzy c-means is used to combine and classify the most useful statistical features to maximize the accuracy of the collected information.Therefore,having the most optimal iris recognition.The proposed model results are validated using True Success Rate(TSR)and compared to other existing models.The results show how effective the combination of the two stages of the proposed model is:the Otsu method and modified Fuzzy c-means for the 400 tested images representing 40 people. 展开更多
关键词 Biometric authentication recognition iris recognition statistical features feature extraction fuzzy c-means TSR sensitivity classification
下载PDF
Stand-Alone Intelligent Voice Recognition System 被引量:1
19
作者 Mohammed R. Saady Hatem El-Borey +1 位作者 El-Sayed A. El-Dahshan Ashraf Shamseldin Yahia 《Journal of Signal and Information Processing》 2014年第4期179-190,共12页
In this paper, an expert system for security based on biometric human features that can be obtained without any contact with the registering sensor is presented. These features are extracted from human’s voice, so th... In this paper, an expert system for security based on biometric human features that can be obtained without any contact with the registering sensor is presented. These features are extracted from human’s voice, so the system is called Voice Recognition System (VRS). The proposed system?consists of a combination of three stages: signal pre-processing, features extraction by using?Wavelet Packet Transform (WPT) and features matching by using Artificial Neural Networks (ANNs). The features vectors are formed after two steps: firstly, decomposing the speech signal at level 7 with Daubechies 20-tap (db20), secondly, the energy corresponding to each WPT node is calculated which collected to form a features vector. One hundred twenty eight features vector for each speaker was fed to the Feed Forward Back-propagation Neural Network (FFBPNN). The data used in this paper are drawn from the English Language Speech Database for Speaker Recognition (ELSDSR) database which composes of audio files for training and other files for testing. The performance of the proposed system is evaluated by using the test files. Our results showed that the rate of correct recognition of the proposed system is about 100% for training files and 95.7% for one testing file for each speaker from the ELSDSR database. The proposed method showed efficiency results were better than the well-known Mel Frequency Cepstral Coefficient (MFCC) and the Zak transform. 展开更多
关键词 VOICE recognition wavelet PACKET TRANSFORM feature extraction Artificial NEURAL Network
下载PDF
基于小波核极限学习机的烟叶烘烤过程的智能识别 被引量:2
20
作者 邢玉清 樊彩霞 +2 位作者 豆根生 宋朝鹏 吴莉莉 《中国烟草学报》 CAS CSCD 北大核心 2024年第1期55-62,共8页
烟叶烘烤设备操作复杂、技术含量高、熟练掌握烟叶烘烤技术人员不足等问题,影响了烟叶的烘烤质量。针对上述问题,本文提出了基于小波核极限学习机的烟叶烘烤过程的智能识别方法。实验中对三段式烘烤过程中的叶片变软、主脉变软、勾尖卷... 烟叶烘烤设备操作复杂、技术含量高、熟练掌握烟叶烘烤技术人员不足等问题,影响了烟叶的烘烤质量。针对上述问题,本文提出了基于小波核极限学习机的烟叶烘烤过程的智能识别方法。实验中对三段式烘烤过程中的叶片变软、主脉变软、勾尖卷边、小打筒、大打筒和干筋6个烘烤阶段分别提取了颜色、纹理和温湿度特征,组建了9维特征向量进入小波核极限学习机,通过增量型算法自适应地选择神经元个数,快速准确地识别了6个阶段,得到了98.33%的识别率。实验结果表明本文提出的基于小波核极限学习机的烟叶烘烤过程的智能识别方法具有一定的可行性,为研发烟叶烘烤智能调控系统奠定了理论基础。 展开更多
关键词 极限学习机 小波核函数 烟叶烘烤 特征提取 识别
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部