Hypocotyl segments from aseptic seedlings of two important cultivars of upland cotton ( Gossypium hirsutum L.) in Northwest China, 'Xinluzao_1', 'Jinmian_7', 'Jinmian_12' and 'Jihe_321...Hypocotyl segments from aseptic seedlings of two important cultivars of upland cotton ( Gossypium hirsutum L.) in Northwest China, 'Xinluzao_1', 'Jinmian_7', 'Jinmian_12' and 'Jihe_321' were transformed respectively by two efficient plant expression plasmids pBinMoBc and pBinoBc via Agrobacterium tumefaciens . In pBinMoBc, cry 1Ac3 gene, which encodes the Bt toxin, is under the control of chimeric OM promoter. In pBinoBc, it is under control of CaMV 35S promoter. After co_cultivation with Agrobacterium tumefimpfaciens LBA4404 (containing pBinMoBc or pBinoBc), kanamycin_resistant selection, somatic embryos were induced and regenerated plants were obtained. Then the regenerated plantlets were grafted to untransformed stocks in greenhouse to produce descendants. The integration of cry 1Ac3 gene and its expression in T 2 generation of transgenic cotton plants were confirmed by Southern hybridization and Western blotting. The analyses of insect bioassay indicated that the transgenic plants of both constructions have significant resistance to the larvae of cotton bollworm ( Heliothis armigera ) and that cry 1Ac3 gene driven by chimeric OM promoter could endue T 2 generation cotton with high pest_resistant ability, implicating that it has a profound application in genetic engineering to breed new pest_resistant cotton varieties.展开更多
AIM: To investigate the promoter region methylation status of retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) in the human esophageal squamous cell carcinoma (ESCC) cell lines and tissues and verify ...AIM: To investigate the promoter region methylation status of retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) in the human esophageal squamous cell carcinoma (ESCC) cell lines and tissues and verify the relationship between methylation of RIZ1 and oncogen- esis, tumor progression and metastasis etc of ESCC. METHODS: Methylation-specific polymerase chain reac- tion (MSP) was used to investigate the promoter region methylation status of RIZ1 in 6 ESCC cell lines. One cell line where RIZ1 promoter region methylation was de- tected was selected for the next study, where the cell line was treated with 5-aza-CdR. Real-time polymerase chain reaction was used to investigate its influence on the transcription of RIZ1. Experiments using frozenpathological specimens from 47 ESCC patients were performed using the same MSP methodology. RESULTS: Promoter methylation of RIZ1 gene was detected in TEl3, CaEs17 and EC109 cell lines and the cell line TEl3 was chosen for further study. The expression of RIZl mRNA in TE-13 was up-regulated after treatment with 5-aza-CdR. The rate of methyla- tion in carcinomas tissues was significantly higher than those in matched neighboring normal and distal ending normal tissue, and the deviation of data was statisti- cally significant (2,2 = 24.136, P 〈 0.01). Analysis of the gender, age familial history, tumour deviation, tumour saturation, lymph gland displacement and clinical stag- ing of 47 samples from ESCC patients showed that the fluctuation of data was not statistically significant. CONCLUSION: Promoter methylation may play an im- portant role in the epigenetic silencing of RIZ1 gene expression in human ESCC. RIZ1 is considered to be a potential tumor suppressor gene and may be a biologi- cal parameter for testing early stage human ESCC.展开更多
In order to learn the expression pattern of GRP1 8(glycine rich protein) gene promoter in transgenic plants and to explore its potential application in plant genetic engineering for vascular specific expression of...In order to learn the expression pattern of GRP1 8(glycine rich protein) gene promoter in transgenic plants and to explore its potential application in plant genetic engineering for vascular specific expression of interested genes, GRP 1 8 promoter was amplified by PCR from Chinese bean genomic DNA. The intermediate vector was constructed by inserting vascular specific expression promoter of GRP 1 8 gene in vector pBI 101. The regenerated tobacco plants obtained were analyzed by PCR to select the putative transgenic plants. The histochemical localization of GUS( β D glucosidase) activity indicates that as for that of GRP 1 8 promoter we can confer the vascular specific expression of GUS gene.展开更多
[Objective]Solute carrier family 11 member 1(SLC11A1)is a major natural resistance candidate gene,which contributes to defense mechanisms of a variety of intracellular bacteria.The SLC11A1 gene promoter sequence of ...[Objective]Solute carrier family 11 member 1(SLC11A1)is a major natural resistance candidate gene,which contributes to defense mechanisms of a variety of intracellular bacteria.The SLC11A1 gene promoter sequence of Xinjiang Brown Cattle,Holstein and Simmental were cloned in the test,and promoter sequence difference was analyzed,in order to provide genetic marker-assisted selection for disease-resistant breeding of dairy cattle.[Method]The Genomic DNA was extracted from whole blood collected from three cattle breeds in Xinjiang,and the 5’ flanking region of SLC11A1 gene was amplified by PCR and sequenced.The sequence was analyzed by bioinformatics software CpGplot,RepeatMasker,TFSEARCH,WWW Signal Scan and dual luciferase assay system.[Result]The SLC11A1 gene promoter sequence of 1 463 bp was confirmed,which had promoter activity.No CpG islands were found on promoter sequence.There were four different sites in SLC11A1 gene promoter sequences between Angus from America and three cattle breeds in Xinjiang.Sequence analysis revealed 12 transcription factor binding sites including Sp1,NF1,RelA-p65,GKLF,and CPBP.In promoter region there was an enhancer region(-734- -740)and two short scattered repetitive elements BOV-tA2,MIR3,as well as repeated DNA element Charlie8.[Conclusion]The SLC11A1 gene promoter sequences of three breeds were obtained,which were different from that of Angus.The paper provided a theoretical basis for further studying the influence of SLC11A1 gene polymorphisms on resistance against intracellular bacteria infection.展开更多
The neuronal differentiation of mesenchymal stem cells offers a new strategy for the treatment of neurological disorders.Thus,there is a need to identify a noninvasive and sensitive in vivo imaging approach for real-t...The neuronal differentiation of mesenchymal stem cells offers a new strategy for the treatment of neurological disorders.Thus,there is a need to identify a noninvasive and sensitive in vivo imaging approach for real-time monitoring of transplanted stem cells.Our previous study confirmed that magnetic resonance imaging,with a focus on the ferritin heavy chain 1 reporter gene,could track the proliferation and differentiation of bone marrow mesenchymal stem cells that had been transduced with lentivirus carrying the ferritin heavy chain 1 reporter gene.However,we could not determine whether or when bone marrow mesenchymal stem cells had undergone neuronal differentiation based on changes in the magnetic resonance imaging signal.To solve this problem,we identified a neuron-specific enolase that can be differentially expressed before and after neuronal differentiation in stem cells.In this study,we successfully constructed a lentivirus carrying the neuron-specific enolase promoter and expressing the ferritin heavy chain 1 reporter gene;we used this lentivirus to transduce bone marrow mesenchymal stem cells.Cellular and animal studies showed that the neuron-specific enolase promoter effectively drove the expression of ferritin heavy chain 1 after neuronal differentiation of bone marrow mesenchymal stem cells;this led to intracellular accumulation of iron and corresponding changes in the magnetic resonance imaging signal.In summary,we established an innovative magnetic resonance imaging approach focused on the induction of reporter gene expression by a neuron-specific promoter.This imaging method can be used to noninvasively and sensitively detect neuronal differentiation in stem cells,which may be useful in stem cell-based therapies.展开更多
AIM:To investigate aberrant DNA methylation of CpG islands and subsequent low-or high-level DNA microsatellite instability(MSI)which is assumed to drive colon carcinogenesis. METHODS:DNA of healthy individuals,adenoma...AIM:To investigate aberrant DNA methylation of CpG islands and subsequent low-or high-level DNA microsatellite instability(MSI)which is assumed to drive colon carcinogenesis. METHODS:DNA of healthy individuals,adenoma(tu-bular or villous/tubulovillous)patients,and colorectal carcinoma patients who underwent colonoscopy was used for assessing the prevalence of aberrant DNA methylation of human DNA mismatch repair gene mutator L homologue 1(hMLH1),Cyclin-dependent kinase inhibitor 2A(CDKN2A/p16),and O-6-methylguanine DNA methyltransferase(MGMT),as well as their rela- tion to MSI. RESULTS:The frequency of promoter methylation for each locus increased in the sequence healthy tissue/adenoma/carcinoma.MGMT showed the highest frequency in each group.MGMT and CDKN2A/p16 presented a statistically significant increase in promoter methylation between the less and more tumorigenic forms of colorectal adenomas(tubular vs tubullovillous and villous adenomas).All patients with tubulovillous/villous adenomas,as well as all colorectal cancer patients,showed promoter methylation in at least one of the examined loci.These findings suggest a potentially crucial role for methylation in the polyp/adenoma to cancer progres- sion in colorectal carcinogenesis.MSI and methylation seem to be interdependent,as simultaneous hMLH1, CDKN2A/p16,and MGMT promoter methylation was present in 8/9 colorectal cancer patients showing the MSI phenotype. CONCLUSION:Methylation analysis of hMLH1,CD- KN2A/p16,and MGMT revealed specific methylation profiles for tubular adenomas,tubulovillous/villous adenomas,and colorectal cancers,supporting the use of these alterations in assessment of colorectal tumorigenesis.展开更多
This study examined the effects of TRAIL-endostatin-based gene-radiotherapy on cellu-lar growth, apoptosis and cell cycle progression in human vascular endothelial cells ECV304 in vitro. The expression of TRAIL and en...This study examined the effects of TRAIL-endostatin-based gene-radiotherapy on cellu-lar growth, apoptosis and cell cycle progression in human vascular endothelial cells ECV304 in vitro. The expression of TRAIL and endostatin protein in ECV304 cells was detected by ELISA after the transfection of recombinant plasmid pshuttle-Egr1-shTRAIL-shES and X-ray irradiation. Then MTT assay was used for determining the cellular proliferation, and flow cytometry (FCM) plus Annexin V and propidium iodide (PI) double-staining or PI single-staining were employed for the detection of apoptosis and cell cycle progression. The results showed that expression of TRAIL and endostatin protein exhibited a time- and dose-dependent change in ECV304 cells after pshut-tle-Egr1-shTRAIL-shES transfection in conjunction with irradiation. In the TRAIL-endostatin-based single- or double-gene-radiotherapy, the cell viability declined in a time- and dose-dependent manner, the percentage of cells at G2/M phase and apoptotic rate was increased, and the percentage of cells at G0/G1 phase was lowered as compared with those receiving radiotherapy alone. Moreover, TRAIL-endostatin-based double-gene-radiotherapy demonstrated better effects on growth inhibition, promotion of apoptosis and induction of cell cycle arrest in ECV304 cells than single-gene-radiotherapy.展开更多
Objective To elucidate the effect of interleukin-1β (IL- 1β) on human growth hormone (hGH) gene expression in a rat somatotropic pituitary cell line MtT/S. Methods Stably transfected MtT/S cells were firstly es...Objective To elucidate the effect of interleukin-1β (IL- 1β) on human growth hormone (hGH) gene expression in a rat somatotropic pituitary cell line MtT/S. Methods Stably transfected MtT/S cells were firstly established by transfecting 484-Lucl plasmid which contained hGH gene promoter --484 to +30 bp and luciferase reporter gene. The effect of IL-1β on hGH gene expression was determined by assaying the luciferase activities. RT-PCR method was also used to determine whether IL-1 recepor mRNA was expressed in MtT/S cells. Results The 10^3 U/mL IL-1β stimulated secretion and synthesis of GH, and promoted the 5'-promoter activity of GH gene in stably transfected MtT/SGL cells with the action of 1.38 times above the control. Among inhibitors of signaling transduction pathways, mitogen-activated protein kinase kinase (MAPKK/MEK) inhibitor PD98059 (40 μmol/L) and p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 (5 μmol/L) completely blocked the stimulatory effect of IL-1μ, and phosphatidylinositol-3-kinase (PI3-K) inhibitor LY294002 partly abolished the effect of IL-1μ. Western blot analysis further confirmed the activation of phosphorylated MEK and p38 MAPK in MtT/SGL cells. Neither over-expression of Pit- 1 nor inhibition of Pit- 1 expression affected induction of hGH promoter activity by IL-1μ. A series of deletion constructs of hGH promoter were created to identify the DNA sequence that mediated the effect of IL-1β, and results showed that the stimulatory effect of IL-1β was abolished following deletion of the --196 to -- 132 bp fragment. Conclusions IL-1β promotes GH secretion and synthesis in rat MtT/S somatotroph cells. The stimulatory effect of IL-1β on hGH gene promoter appears to require the activation of MEK, p38 MAPK, PI3-K, and a fragment of promoter sequence that spans the -196 to -132 bp of the gene, but it may be unlinked with Pit-1 protein.展开更多
AIM: The GFAP was traditionally considered to be a biomarker for neural gila (mainly astrocytes and nonmyelinating Schwann cells). Genetically, a 2.2-kb human GFAP promoter has been successfully used to target astr...AIM: The GFAP was traditionally considered to be a biomarker for neural gila (mainly astrocytes and nonmyelinating Schwann cells). Genetically, a 2.2-kb human GFAP promoter has been successfully used to target astrocytes in vitro and in vivo. More recently, GFAP was also established as one of the several makers for identifying hepatic stellate cells (HSC). In this project, possible application of the same 2.2-kb human GFAP promoter for targeting HSC was investigated. METHODS: The GFAP-lacZ transgene was transfected into various cell lines (HSC, hepatocyte, and other nonHSC cell types). The transgene expression specificity was determined by X-gal staining of the β-galactosidase activity. And the responsiveness of the transgene was tested with a typical pro-fibrotic cytokine TGF-β1. The expression of endogenous GFAP gene was assessed by real-time RT-PCR, providing a reference for the transgene expression. RESULTS: The results demonstrated for the first time that the 2.2 kb hGFAP promoter was not only capable of directing HSC-specific expression, but also responding to a known pro-fibrogenic cytokine TGF-β1 by upregulation in a doseand time-dependent manner, similar to the endogenous GFAP. CONCLUSION: In conclusion, these findings suggested novel utilities for using the GFAP promoter to specifically manipulate HSC for therapeutic purpose.展开更多
文摘Hypocotyl segments from aseptic seedlings of two important cultivars of upland cotton ( Gossypium hirsutum L.) in Northwest China, 'Xinluzao_1', 'Jinmian_7', 'Jinmian_12' and 'Jihe_321' were transformed respectively by two efficient plant expression plasmids pBinMoBc and pBinoBc via Agrobacterium tumefaciens . In pBinMoBc, cry 1Ac3 gene, which encodes the Bt toxin, is under the control of chimeric OM promoter. In pBinoBc, it is under control of CaMV 35S promoter. After co_cultivation with Agrobacterium tumefimpfaciens LBA4404 (containing pBinMoBc or pBinoBc), kanamycin_resistant selection, somatic embryos were induced and regenerated plants were obtained. Then the regenerated plantlets were grafted to untransformed stocks in greenhouse to produce descendants. The integration of cry 1Ac3 gene and its expression in T 2 generation of transgenic cotton plants were confirmed by Southern hybridization and Western blotting. The analyses of insect bioassay indicated that the transgenic plants of both constructions have significant resistance to the larvae of cotton bollworm ( Heliothis armigera ) and that cry 1Ac3 gene driven by chimeric OM promoter could endue T 2 generation cotton with high pest_resistant ability, implicating that it has a profound application in genetic engineering to breed new pest_resistant cotton varieties.
基金Supported by Grant-in-aid from Specialized Research Fund for the Doctoral Program of Higher Education,No. 20091202110009Grant-in-aid from Natural Science Foundation of Tianjin,No. 10JCYBJC11300
文摘AIM: To investigate the promoter region methylation status of retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) in the human esophageal squamous cell carcinoma (ESCC) cell lines and tissues and verify the relationship between methylation of RIZ1 and oncogen- esis, tumor progression and metastasis etc of ESCC. METHODS: Methylation-specific polymerase chain reac- tion (MSP) was used to investigate the promoter region methylation status of RIZ1 in 6 ESCC cell lines. One cell line where RIZ1 promoter region methylation was de- tected was selected for the next study, where the cell line was treated with 5-aza-CdR. Real-time polymerase chain reaction was used to investigate its influence on the transcription of RIZ1. Experiments using frozenpathological specimens from 47 ESCC patients were performed using the same MSP methodology. RESULTS: Promoter methylation of RIZ1 gene was detected in TEl3, CaEs17 and EC109 cell lines and the cell line TEl3 was chosen for further study. The expression of RIZl mRNA in TE-13 was up-regulated after treatment with 5-aza-CdR. The rate of methyla- tion in carcinomas tissues was significantly higher than those in matched neighboring normal and distal ending normal tissue, and the deviation of data was statisti- cally significant (2,2 = 24.136, P 〈 0.01). Analysis of the gender, age familial history, tumour deviation, tumour saturation, lymph gland displacement and clinical stag- ing of 47 samples from ESCC patients showed that the fluctuation of data was not statistically significant. CONCLUSION: Promoter methylation may play an im- portant role in the epigenetic silencing of RIZ1 gene expression in human ESCC. RIZ1 is considered to be a potential tumor suppressor gene and may be a biologi- cal parameter for testing early stage human ESCC.
基金Supported by the National Natural Science Foundation of China(No.39730 35 0 ) .
文摘In order to learn the expression pattern of GRP1 8(glycine rich protein) gene promoter in transgenic plants and to explore its potential application in plant genetic engineering for vascular specific expression of interested genes, GRP 1 8 promoter was amplified by PCR from Chinese bean genomic DNA. The intermediate vector was constructed by inserting vascular specific expression promoter of GRP 1 8 gene in vector pBI 101. The regenerated tobacco plants obtained were analyzed by PCR to select the putative transgenic plants. The histochemical localization of GUS( β D glucosidase) activity indicates that as for that of GRP 1 8 promoter we can confer the vascular specific expression of GUS gene.
基金Supported by Basic Scientific Research Fund for Public-Interest Scientific Research Institutes in Xinjiang Uygur Autonomous Region(KY2014008)
文摘[Objective]Solute carrier family 11 member 1(SLC11A1)is a major natural resistance candidate gene,which contributes to defense mechanisms of a variety of intracellular bacteria.The SLC11A1 gene promoter sequence of Xinjiang Brown Cattle,Holstein and Simmental were cloned in the test,and promoter sequence difference was analyzed,in order to provide genetic marker-assisted selection for disease-resistant breeding of dairy cattle.[Method]The Genomic DNA was extracted from whole blood collected from three cattle breeds in Xinjiang,and the 5’ flanking region of SLC11A1 gene was amplified by PCR and sequenced.The sequence was analyzed by bioinformatics software CpGplot,RepeatMasker,TFSEARCH,WWW Signal Scan and dual luciferase assay system.[Result]The SLC11A1 gene promoter sequence of 1 463 bp was confirmed,which had promoter activity.No CpG islands were found on promoter sequence.There were four different sites in SLC11A1 gene promoter sequences between Angus from America and three cattle breeds in Xinjiang.Sequence analysis revealed 12 transcription factor binding sites including Sp1,NF1,RelA-p65,GKLF,and CPBP.In promoter region there was an enhancer region(-734- -740)and two short scattered repetitive elements BOV-tA2,MIR3,as well as repeated DNA element Charlie8.[Conclusion]The SLC11A1 gene promoter sequences of three breeds were obtained,which were different from that of Angus.The paper provided a theoretical basis for further studying the influence of SLC11A1 gene polymorphisms on resistance against intracellular bacteria infection.
基金supported by the National Natural Science Foundation of China,No.81771892(to JHC).
文摘The neuronal differentiation of mesenchymal stem cells offers a new strategy for the treatment of neurological disorders.Thus,there is a need to identify a noninvasive and sensitive in vivo imaging approach for real-time monitoring of transplanted stem cells.Our previous study confirmed that magnetic resonance imaging,with a focus on the ferritin heavy chain 1 reporter gene,could track the proliferation and differentiation of bone marrow mesenchymal stem cells that had been transduced with lentivirus carrying the ferritin heavy chain 1 reporter gene.However,we could not determine whether or when bone marrow mesenchymal stem cells had undergone neuronal differentiation based on changes in the magnetic resonance imaging signal.To solve this problem,we identified a neuron-specific enolase that can be differentially expressed before and after neuronal differentiation in stem cells.In this study,we successfully constructed a lentivirus carrying the neuron-specific enolase promoter and expressing the ferritin heavy chain 1 reporter gene;we used this lentivirus to transduce bone marrow mesenchymal stem cells.Cellular and animal studies showed that the neuron-specific enolase promoter effectively drove the expression of ferritin heavy chain 1 after neuronal differentiation of bone marrow mesenchymal stem cells;this led to intracellular accumulation of iron and corresponding changes in the magnetic resonance imaging signal.In summary,we established an innovative magnetic resonance imaging approach focused on the induction of reporter gene expression by a neuron-specific promoter.This imaging method can be used to noninvasively and sensitively detect neuronal differentiation in stem cells,which may be useful in stem cell-based therapies.
基金Supported by A 2-year grant of the Greek Ministry of Health and Welfare,No.111K/56
文摘AIM:To investigate aberrant DNA methylation of CpG islands and subsequent low-or high-level DNA microsatellite instability(MSI)which is assumed to drive colon carcinogenesis. METHODS:DNA of healthy individuals,adenoma(tu-bular or villous/tubulovillous)patients,and colorectal carcinoma patients who underwent colonoscopy was used for assessing the prevalence of aberrant DNA methylation of human DNA mismatch repair gene mutator L homologue 1(hMLH1),Cyclin-dependent kinase inhibitor 2A(CDKN2A/p16),and O-6-methylguanine DNA methyltransferase(MGMT),as well as their rela- tion to MSI. RESULTS:The frequency of promoter methylation for each locus increased in the sequence healthy tissue/adenoma/carcinoma.MGMT showed the highest frequency in each group.MGMT and CDKN2A/p16 presented a statistically significant increase in promoter methylation between the less and more tumorigenic forms of colorectal adenomas(tubular vs tubullovillous and villous adenomas).All patients with tubulovillous/villous adenomas,as well as all colorectal cancer patients,showed promoter methylation in at least one of the examined loci.These findings suggest a potentially crucial role for methylation in the polyp/adenoma to cancer progres- sion in colorectal carcinogenesis.MSI and methylation seem to be interdependent,as simultaneous hMLH1, CDKN2A/p16,and MGMT promoter methylation was present in 8/9 colorectal cancer patients showing the MSI phenotype. CONCLUSION:Methylation analysis of hMLH1,CD- KN2A/p16,and MGMT revealed specific methylation profiles for tubular adenomas,tubulovillous/villous adenomas,and colorectal cancers,supporting the use of these alterations in assessment of colorectal tumorigenesis.
基金supported by agrant from the National Natural Science Foundation of China(No.30570546)
文摘This study examined the effects of TRAIL-endostatin-based gene-radiotherapy on cellu-lar growth, apoptosis and cell cycle progression in human vascular endothelial cells ECV304 in vitro. The expression of TRAIL and endostatin protein in ECV304 cells was detected by ELISA after the transfection of recombinant plasmid pshuttle-Egr1-shTRAIL-shES and X-ray irradiation. Then MTT assay was used for determining the cellular proliferation, and flow cytometry (FCM) plus Annexin V and propidium iodide (PI) double-staining or PI single-staining were employed for the detection of apoptosis and cell cycle progression. The results showed that expression of TRAIL and endostatin protein exhibited a time- and dose-dependent change in ECV304 cells after pshut-tle-Egr1-shTRAIL-shES transfection in conjunction with irradiation. In the TRAIL-endostatin-based single- or double-gene-radiotherapy, the cell viability declined in a time- and dose-dependent manner, the percentage of cells at G2/M phase and apoptotic rate was increased, and the percentage of cells at G0/G1 phase was lowered as compared with those receiving radiotherapy alone. Moreover, TRAIL-endostatin-based double-gene-radiotherapy demonstrated better effects on growth inhibition, promotion of apoptosis and induction of cell cycle arrest in ECV304 cells than single-gene-radiotherapy.
文摘Objective To elucidate the effect of interleukin-1β (IL- 1β) on human growth hormone (hGH) gene expression in a rat somatotropic pituitary cell line MtT/S. Methods Stably transfected MtT/S cells were firstly established by transfecting 484-Lucl plasmid which contained hGH gene promoter --484 to +30 bp and luciferase reporter gene. The effect of IL-1β on hGH gene expression was determined by assaying the luciferase activities. RT-PCR method was also used to determine whether IL-1 recepor mRNA was expressed in MtT/S cells. Results The 10^3 U/mL IL-1β stimulated secretion and synthesis of GH, and promoted the 5'-promoter activity of GH gene in stably transfected MtT/SGL cells with the action of 1.38 times above the control. Among inhibitors of signaling transduction pathways, mitogen-activated protein kinase kinase (MAPKK/MEK) inhibitor PD98059 (40 μmol/L) and p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 (5 μmol/L) completely blocked the stimulatory effect of IL-1μ, and phosphatidylinositol-3-kinase (PI3-K) inhibitor LY294002 partly abolished the effect of IL-1μ. Western blot analysis further confirmed the activation of phosphorylated MEK and p38 MAPK in MtT/SGL cells. Neither over-expression of Pit- 1 nor inhibition of Pit- 1 expression affected induction of hGH promoter activity by IL-1μ. A series of deletion constructs of hGH promoter were created to identify the DNA sequence that mediated the effect of IL-1β, and results showed that the stimulatory effect of IL-1β was abolished following deletion of the --196 to -- 132 bp fragment. Conclusions IL-1β promotes GH secretion and synthesis in rat MtT/S somatotroph cells. The stimulatory effect of IL-1β on hGH gene promoter appears to require the activation of MEK, p38 MAPK, PI3-K, and a fragment of promoter sequence that spans the -196 to -132 bp of the gene, but it may be unlinked with Pit-1 protein.
基金Supported by the Biomedical Research Councilthe Institute of Bioengineering and Nanotechnology,the Republic of Singapore
文摘AIM: The GFAP was traditionally considered to be a biomarker for neural gila (mainly astrocytes and nonmyelinating Schwann cells). Genetically, a 2.2-kb human GFAP promoter has been successfully used to target astrocytes in vitro and in vivo. More recently, GFAP was also established as one of the several makers for identifying hepatic stellate cells (HSC). In this project, possible application of the same 2.2-kb human GFAP promoter for targeting HSC was investigated. METHODS: The GFAP-lacZ transgene was transfected into various cell lines (HSC, hepatocyte, and other nonHSC cell types). The transgene expression specificity was determined by X-gal staining of the β-galactosidase activity. And the responsiveness of the transgene was tested with a typical pro-fibrotic cytokine TGF-β1. The expression of endogenous GFAP gene was assessed by real-time RT-PCR, providing a reference for the transgene expression. RESULTS: The results demonstrated for the first time that the 2.2 kb hGFAP promoter was not only capable of directing HSC-specific expression, but also responding to a known pro-fibrogenic cytokine TGF-β1 by upregulation in a doseand time-dependent manner, similar to the endogenous GFAP. CONCLUSION: In conclusion, these findings suggested novel utilities for using the GFAP promoter to specifically manipulate HSC for therapeutic purpose.