期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进的IIE-SegNet的快速图像语义分割方法
1
作者
李庆
王宏健
+2 位作者
李本银
肖瑶
迟志康
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2024年第2期314-323,共10页
针对IIE-SegNet计算复杂度高、计算量大等问题,本文提出一种基于IIE-SegNet的改进方法。编码结构中引入经ImageNet训练过的VGG16和多尺度空洞卷积空间金字塔池化来获得丰富的编码信息;解码结构中,设计全局加平均模块来解决IIE-SegNet计...
针对IIE-SegNet计算复杂度高、计算量大等问题,本文提出一种基于IIE-SegNet的改进方法。编码结构中引入经ImageNet训练过的VGG16和多尺度空洞卷积空间金字塔池化来获得丰富的编码信息;解码结构中,设计全局加平均模块来解决IIE-SegNet计算量大的问题;研究Focal损失函数来解决正、负采样不平衡的问题。实验结果表明:与IIE-SegNet相比,本方法在PASCAL VOC 2012数据集上的语义分割速度更快,平均每次迭代快0.6 s左右,测试单张图像的时间平均减少了0.94 s;分割精度更高,MIoU提升了2.1%。在扩展的PASCAL VOC 2012(Exp-PASCAL VOC 2012)数据集上的语义分割速度更快,平均每次迭代快0.4 s左右,测试单张图像的时间平均减少了0.92 s;分割精度更高,MPA和MIoU分别提升了2.6%和2.8%,特别是对于小尺度目标分割边界更清晰,性能得到了很大的提升。
展开更多
关键词
语义分割
深度学习
多尺度空洞卷积空间金字塔池化
图像信息熵
全局加平均
VGG16
IIE-SegNet
下载PDF
职称材料
基于多尺度卷积神经网络的交通标示识别研究
被引量:
3
2
作者
刘万军
李嘉欣
曲海成
《计算机应用研究》
CSCD
北大核心
2022年第5期1557-1562,共6页
交通标示识别在自动驾驶领域有着广泛的应用前景。在实际场景中,光照、地理位置、检测方法等因素会对较小交通标示识别产生影响,导致识别精度降低。针对这些问题,提出一种新型多尺度融合卷积神经网络模型(SF-RCNN)。首先在基础特征提取...
交通标示识别在自动驾驶领域有着广泛的应用前景。在实际场景中,光照、地理位置、检测方法等因素会对较小交通标示识别产生影响,导致识别精度降低。针对这些问题,提出一种新型多尺度融合卷积神经网络模型(SF-RCNN)。首先在基础特征提取网络中加入多尺度空洞卷积池化金字塔模块(MASPP),在多尺度空洞卷积采样后,不改变每一个特征下的信息量,而是通过合并通道数来实现特征图的融合,这样既减少了分辨率的损失,也可以捕捉同一图像的上下文信息;其次在网络中增加两个快速拼接模块(F-concat),融合模型中高层与低层的信息,既丰富语义信息,又可以实现不同尺度信息的重复利用;最后在每个最大池化层之前增加批标准化层(BN),转换每一层的数据。尽管增加模块加深了网络深度,但是BN层可以加快模型收敛速度,使整个训练时间不发生较大改变。在CCTSDB数据集上进行特征提取。实验结果表明,该模型利用新型网络结构SF-RCNN,交通标示识别精度均值达到了87.48%,警告类别识别精度达到89.93%,禁令类别识别精度达到89.25%、方向类别识别精度达到81.08%、指示类别识别精度达到89.66%。
展开更多
关键词
卷积神经网络
交通标示识别
SF-RCNN
maspp
F-concat
下载PDF
职称材料
题名
基于改进的IIE-SegNet的快速图像语义分割方法
1
作者
李庆
王宏健
李本银
肖瑶
迟志康
机构
哈尔滨工程大学智能科学与工程学院
烟台南山学院智能科学与工程学院
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2024年第2期314-323,共10页
基金
GF科技创新特区项目(21-163-05-ZT-002-005-03)
水下机器人重点实验室基金项目(JCKYS2022SXJQR-09)
哈尔滨工程大学“高水平科研引导专项”(3072022QBZ0403)。
文摘
针对IIE-SegNet计算复杂度高、计算量大等问题,本文提出一种基于IIE-SegNet的改进方法。编码结构中引入经ImageNet训练过的VGG16和多尺度空洞卷积空间金字塔池化来获得丰富的编码信息;解码结构中,设计全局加平均模块来解决IIE-SegNet计算量大的问题;研究Focal损失函数来解决正、负采样不平衡的问题。实验结果表明:与IIE-SegNet相比,本方法在PASCAL VOC 2012数据集上的语义分割速度更快,平均每次迭代快0.6 s左右,测试单张图像的时间平均减少了0.94 s;分割精度更高,MIoU提升了2.1%。在扩展的PASCAL VOC 2012(Exp-PASCAL VOC 2012)数据集上的语义分割速度更快,平均每次迭代快0.4 s左右,测试单张图像的时间平均减少了0.92 s;分割精度更高,MPA和MIoU分别提升了2.6%和2.8%,特别是对于小尺度目标分割边界更清晰,性能得到了很大的提升。
关键词
语义分割
深度学习
多尺度空洞卷积空间金字塔池化
图像信息熵
全局加平均
VGG16
IIE-SegNet
Keywords
semantic segmentation
deep learning
multiscale atrous spatial pyramid pooling(
maspp
)
image in-formation entropy(IIE)
global add average(GAA)
VGG16
IIE-SegNet
分类号
TP389.1 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
基于多尺度卷积神经网络的交通标示识别研究
被引量:
3
2
作者
刘万军
李嘉欣
曲海成
机构
辽宁工程技术大学软件学院
出处
《计算机应用研究》
CSCD
北大核心
2022年第5期1557-1562,共6页
基金
国家自然科学基金资助项目(42071351)
辽宁省教育厅基础研究项目(LJ2019JL010)
+1 种基金
辽宁省教育厅科学研究项目(LJ2020QNL013)
辽宁工程技术大学学科创新团队资助项目(LNTU20TD-23)。
文摘
交通标示识别在自动驾驶领域有着广泛的应用前景。在实际场景中,光照、地理位置、检测方法等因素会对较小交通标示识别产生影响,导致识别精度降低。针对这些问题,提出一种新型多尺度融合卷积神经网络模型(SF-RCNN)。首先在基础特征提取网络中加入多尺度空洞卷积池化金字塔模块(MASPP),在多尺度空洞卷积采样后,不改变每一个特征下的信息量,而是通过合并通道数来实现特征图的融合,这样既减少了分辨率的损失,也可以捕捉同一图像的上下文信息;其次在网络中增加两个快速拼接模块(F-concat),融合模型中高层与低层的信息,既丰富语义信息,又可以实现不同尺度信息的重复利用;最后在每个最大池化层之前增加批标准化层(BN),转换每一层的数据。尽管增加模块加深了网络深度,但是BN层可以加快模型收敛速度,使整个训练时间不发生较大改变。在CCTSDB数据集上进行特征提取。实验结果表明,该模型利用新型网络结构SF-RCNN,交通标示识别精度均值达到了87.48%,警告类别识别精度达到89.93%,禁令类别识别精度达到89.25%、方向类别识别精度达到81.08%、指示类别识别精度达到89.66%。
关键词
卷积神经网络
交通标示识别
SF-RCNN
maspp
F-concat
Keywords
convolutional neural network(CNN)
traffic sign identification
SF-RCNN
maspp
F-concat
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进的IIE-SegNet的快速图像语义分割方法
李庆
王宏健
李本银
肖瑶
迟志康
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
2
基于多尺度卷积神经网络的交通标示识别研究
刘万军
李嘉欣
曲海成
《计算机应用研究》
CSCD
北大核心
2022
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部